
Chris G. Willcocks
Durham University

Cyber Security
Applied cryptography

Introduction

1. Content in this lecture will be useful in the coursework
2. This is a single lecture on applied cryptography for computer security.

there’s dedicated codes and cryptography teaching:
i. History of cryptography
ii. RSA
iii. Cryptographic hash functions
iv. AES
v. Elliptic Curves
vi. Entropy
vii. Error correction
viii. Linear codes

3. For this reason I won’t cover in detail theory, but will focus more on
real-world usage & concepts.

Definition

What is cryptography?

“The science of secret writing” - Gollmann.

“Cryptology is the science of communicating using secret codes. It is
subdivided into cryptography, writing in codes, and cryptanalysis,
deciphering codes.” - Richard R. Brooks.

“Cryptography or cryptology (from Greek κρυπτός kryptós, "hidden, secret";
and γράφειν graphein, "writing", or -λογία -logia, "study", respectively) is
the practice and study of techniques for secure communication in the
presence of third parties called adversaries.” - Wikipedia.

Encryption & Decryption

“I buried my
treasure under
the oak tree.”

Clear text:
“I buried my treasure under the oak tree.”

Cipher text:
“V ohevrq zl gernfher haqre gur bnx gerr.”

Clear text:
“I buried my treasure under the oak tree.”

Encryption

Decryption

Substitution Cyphers

● Replaces each letter of the alphabet with another
letter, e.g. ROT13 is a popular basic example.
○ ROTk is easy to break, just iterate over all

keys and fuzzy string search a word list.
● Lots of variants:

○ Monoalphabetic
■ Fixed substitution

○ Polyalphabetic
■ Change substitution rules in different

parts of the message
○ Polygraphic

■ Substitute with groups of letters, e.g.
just using pairs increases to 262 = 676

Monoalphabetic simple substitution:
“treasure under the oak tree.”
“gernfher haqre gur bnx gerr.”

Polyalphabetic:

“treasure under the oak tree.”
 13 14 15 16 17 18 19

“gerngifs jcstg ixu esc lkxx.”

Polygraphic:

“treasure under the oak tree.”

“h(C%7]_”

● Variants throughout history: Vigenère, Enigma. Not used much anymore. Broken with frequency
analysis (various divide-and-conquer approaches for more advanced poly-alphabetic ciphers)

Encryption & Decryption

Encryption Decryption
Cipher-textClear-text Clear-text

Key Key

● In practise we use algorithms that encrypt the message with a key.
● If both keys are the same, we call this a “symmetric key”

cryptosystem.
● If both keys are different, we calls this “asymmetric key” or “public

key cryptography”.

*diagram from Brooks

SSH Example

Generate private & public key from a large random
number (/dev/random)

Private key, stays with you
and is not distributed.

Public Key
1

2

Distributing Public Keys

Give your public key to other
computers or applications, then you

can connect and send messages to
them securely without typing in your

username/password each time

Other key pairs:
PGP key pairs:
● Can be set up in a similar fashion. Both

can choose the underlying algorithm
(RSA, DSA, etc).

TLS (replaced SSL) key pairs:
● Encrypt TCP/IP communications and

secure browser-server connections
(used for SSL Certificates)

Bitcoin wallets.

Block Ciphers

● Symmetric key encryption method typically used for files
● Encrypts blocks of text at a time, rather than bits of text (stream ciphers).
● DES encrypts 64-bit blocks at a time.
● AES encrypts 128-bit (or bigger) blocks at a time.
● Developed to eliminate the chance of encrypting identical data the same

way: the ciphertext from the previous block is fed into the algorithm for
computing the next block.

● Also uses an initialisation vector such that same message encrypted
multiple times will be different.

ECB vs Non-ECB modes

Further reading: https://en.wikipedia.org/wiki/Block_cipher_mode_of_operation

Image “ECB Penguin” Non-ECB mode looks
pseudo random

https://en.wikipedia.org/wiki/Block_cipher_mode_of_operation

Block Cipher Example

Encrypt

Decrypt

Hacking AES-256

AES-256 is currently regarded as one of the most secure block cipher
algorithms. To brute-force you would need 2256 =

115792089237316195423570985008687907853269984665640564039457584007913129639936

guesses, which would take longer than the age of the universe.
AES makes the system secure?

● Hacking AES-256 wifi passwords in 8,192 guesses
● Cache-timing attacks for AES

These are side-channel attacks.

https://www.hardwear.io/document/slides-craig-ramsay.pdf
https://cr.yp.to/antiforgery/cachetiming-20050414.pdf

Storing Passwords

Storing passwords in plain text is not good.

● If someone obtains database of user IDs/passwords (e.g. database
leak, inside job, hacked server, bad admin) then all users are exposed.

● We should design it that, even there is a flaw in the system security, the
password should be hard to find.

● Q. Should we encrypt the passwords?
● We can hash the passwords and check the hashes match instead.

Hash Functions

● Any function that can map data of arbitrary size to a fixed size.
● Different applications require hash functions with different properties.

○ E.g. in graphics, you may want a spatial hash which maps from 3D space to 1D space
while guaranteeing locality; points nearby in 3D are also nearby in 1D so you can retrieve
objects from your game world quickly without cache misses.

● Cryptographic hash functions should guarantee these properties:
○ Deterministic
○ One-way function
○ No collisions
○ Avalanche effect

● Popular algorithms:
○ MD5 (no longer deemed secure)
○ SHA-1 (no longer deemed secure)
○ SHA-2, e.g. SHA-256 and SHA-512 - better but still susceptible to certain attacks.

Storing passwords (continued)

● Will storing our passwords as a list of hashes, which can’t be inverted,
make us secure?

● Most passwords are
○ not random characters
○ not arbitrary length
○ have some structure to them

● For example, if we assume passwords are <= 8 characters
○ 1 character could have 94 possibilities (number of printable ascii characters)
○ 2 characters have 942

○ 8 characters have 948 possible values = 6,095,689,385,410,816 assuming 1010
hashes/second (e.g. MD5, others are much slower) would take 7 days.

○ 9 characters would take 2 years.

● This would be an offline attack.

Precomputed Hash Tables

What if we crowd-funded the precomputation of the hashes, and stored
(sold) them on a hard drive?

● They could just lookup in the order of minutes/hours.
● Calculating hashes is significantly slower than doing a lookup.

948 x (8 bytes plain text + 32 byte hash) = 244,000 TB (too much storage
for such an attack).

Is there a really good compression scheme which allows for fast querying?

● Rainbow Tables (get some here)

http://project-rainbowcrack.com/table.htm

Rainbow Tables

Plain text Hashes

SHA-256

FIkWrzhvg4IJsi2h6wUhUaSUCQzq4k
VuK3QuPAlEbeSyAP7kjaH32B29edS
yLS9ufqHSWBALEsEZasUpYjL3nrGW
Kcxwyr8nwLvnDMcDVXcQaRFsy2M8

xQfu4mKvauf0Z1jIoNd69VZ2EzfOtXF

“Kitten”
“FlkWrz”
“VuKQu”
“yLSufq”
“Kcxwyr” …

100,000 times

Some Reduction Function

End Hash:Start Text: “Kitten”

We just store these two things from the chain

Rainbow Tables

Starttext End of chain after 100,000
RiLpFt c744b1716cbf8d4dd0ff4ce31a17715
NoEqki xQfu4mKvauf0Z1jIoNd69VZ2EzfOtXF
VsTwNi 3cd696a8571a843cda453a229d7418
 … ...
FsAilW 7ad7d6fa6bb4fd28ab98b3dd33261e8f

We sort table by end hashes
allowing for fast search. Table
“contains” all pre-computed
hashes but is 100,000 times
smaller.

To query the rainbow table:

1. Iterate 100,000 times. Look for the hash in the sorted list of final hashes.
2. If not found reduce the hash into another plaintext, and hash the new plaintext.
3. If it is found, the chain for which the hash matches the final hash contains the original

hash. You can now go from start of chain to recover secret plain text.

Reduced text Hashes

First guess second...

[Reading]

http://kestas.kuliukas.com/RainbowTables/

Salts

● Using rainbow tables we can recover passwords within minutes and
retain reasonable storage requirements (e.g. 500 GB for a rainbow table).

● So we introduce a “salt” which is random string “7sA9Fbf” stored as plain
text alongside the hash, but we compute the hash by:

● Two users with the same password will now have different hashes, as
they will have different randomly generated salts.

● For 32-bit salts, you would now need to pre-compute and query 232

rainbow table databases (for each salt value) making such hacking
approaches infeasible.

hash = H(salt + password)

Storing Passwords Example

Algorithm
Salt

Hash Meta

UNIX

Windows

Hack weak Unix passwords with
“John the Ripper” (and other OS).

Coursework

● Coursework will be on DUO next week.

● DON’T PANIC!

We will cover more things that will be
useful for the coursework in subsequent
lectures and labs.

This is unlike any other coursework you will get, as you will not
have explicit instructions on how to hack the system. This is
done on purpose to emulate the mindset of a hacker.

