
Chris G. Willcocks
Durham University

Cyber Security
Operating system security & access control

Lecture Overview

● Access Control
○ ACMs
○ ACLs
○ Permissions
○ …

● Introduction to *NIX security - we’ll cover this in detail due to high-end
server popularity
○ https://www.exploit-db.com/search?platform=linux

● Briefly on Windows security:
○ https://www.exploit-db.com/search?platform=windows

● Confidentiality models
● Integrity models
● Briefly on security evaluation
● Protection rings

https://www.exploit-db.com/search?platform=linux
https://www.exploit-db.com/search?platform=windows

Access Control

● Your computer contains lots of subjects (typically users, people) and
lots of objects (typically documents, images, programs).

● How are access rights managed?
○ Classification level?

■ Mandatory access control (MAC)
○ System administrator defining groups of user access rights?

■ Discretionary access control (DAC)
○ Role in the organisation?

■ Role based access control (RBAC)

● What/how/where do we store access permissions?
○ Multiple approaches

Access Control Matrix (ACM)

+ Easy to define, easy to verify
- Poor scalability, poor handling of changes, could get corrupted.

bill.doc readme.txt edit.exe func.sh

Alice - {read} {execute} {execute, read}

Chris {read, append} {read} {execute, read,
write}

{execute}

Greg - {read} {execute, write} -

Jess {read} {read, write} - -

Objects

Subjects

Access Permissions

*NIX has 8 access permission settings for 3 types of users:

● Owners, Groups, and Others
● Combination of read (r), write (w), and execute (x)
● Represented as numbers in base 8

--- all types of access denied
--x execute access only
-w- write access only
-wx write and execute only
r-- read only
r-x read and execute only
rw- read and write access only
rwx everything allowed

*NIX Permissions

Resource type
- file
d directory
b block device
c character device
s socket
l symbolic link
p FIFO

User rules
r read
w write
x execute

Group rules
r read
w write
x execute

Other rules
r read
w write
x execute

-rwxr--r--

Permissions

Owner

Group (users) Filesize

setuid, setgid, and sticky bits

setuid bit: users run executable with
permissions of the executable’s owner

Further reading:
https://wiki.archlinux.org/index.php/File_perm
issions_and_attributes

Setuid hacks:
https://gist.github.com/dergachev/7916152
https://null-byte.wonderhowto.com/how-to/h
ack-like-pro-finding-potential-suid-sgid-vulner
abilities-linux-unix-systems-0158373/

sticky bit: prevents users with
write/execute permissions from deleting
the directory contained files

https://wiki.archlinux.org/index.php/File_permissions_and_attributes
https://wiki.archlinux.org/index.php/File_permissions_and_attributes
https://gist.github.com/dergachev/7916152
https://null-byte.wonderhowto.com/how-to/hack-like-pro-finding-potential-suid-sgid-vulnerabilities-linux-unix-systems-0158373/
https://null-byte.wonderhowto.com/how-to/hack-like-pro-finding-potential-suid-sgid-vulnerabilities-linux-unix-systems-0158373/
https://null-byte.wonderhowto.com/how-to/hack-like-pro-finding-potential-suid-sgid-vulnerabilities-linux-unix-systems-0158373/

*NIX Permissions to ACM

bill.doc game.bin func.sh readme.txt

Alice - {execute} {read,
execute}

{read}

Chris {read,
write}

{read, write,
execute}

{execute} {read}

Greg - {write,
execute}

- {read}

Jess {read} {execute} - {read,
write}

Groups:
fun: chris
games: greg
jess: jess

-rw-r----- 2 chris jess 2278 13 Oct 07:40 bill.doc
-rwx-wx--x 2 chris games 340 28 Oct 01:25 game.bin
-r-x--x--- 2 alice fun 748 1 Oct 21:43 func.sh
-rw----r-- 1 jess jess 170 1 Oct 20:34 readme.txt

Link Vulnerabilities

● Add new path to an inode.
● Multiple names for a single inode.
● For example, to overwrite /etc/passwd:

ln -s /etc/passwd file
./trusted_dump file < *passwd-entry*

e.g. a command which can read/write root owned files, but doesn’t
know the file is /etc/passwd

● Programs have to be aware of which files they are using.

O_NOFOLLOW flag can be added to prevent following links, e.g. “open(file, O_NOFOLLOW, mode)”

Hardening

● SELinux
○ Make sure that programs only

access what they’re meant to
■ Hard to use in practise

● AppArmor
○ Similar/simpler to SELinux

● Slightly off-topic but will
mention here:
○ ASLR

■ Randomize memory
address (ret2libc)

○ PaX
■ Executable space

protection

https://shellblade.net/files/docs/ret2libc.pdf

Device File Vulnerabilities

● Devices are represented as files
○ /dev/tty terminal
○ /dev/mem physical memory
○ /dev/kmem virtual memory
○ /dev/mouse mouse

● Created using mknod (only accessible by root)
○ Can bypass access control by getting access to memory

■ /dev/kmem or /dev/mem used to be “world” (other) accessible

● Can get access to user inputs
○ /dev/tty

■ See passwords, set keys
■ mesg n - prevents write access to current terminal

Access Control Lists (ACL)

● Store by column (object-focused):

+ Easy to view object access control, easy
to remove access rights if object removed

- Poor overview of access rights per
subject, difficult to remove subject.

ACL:

bill.doc {Chris: read, write}, {Jess: read}
game.bin {Alice: execute}, {Chris: read, write, execute},

{Greg: write, execute}, {Jess: execute}
func.sh {Alice: read, execute}, {Chris: execute}
readme.txt {Alice: read}, {Chris: read}, {Greg: read},

{Jess: read}

bill.doc game.bin func.sh readme.txt

Alice - {execute} {read,
execute}

{read}

Chris {read,
write}

{read, write,
execute}

{execute} {read}

Greg - {write,
execute}

- {read}

Jess {read} {execute} - {read,
write}

Capability-based Security

● Store by row (subject-focused):

+ Easy to transfer ownership, easy
inheritance of access rights.

- Poor overview of access rights per
object, difficulty of revocation of object.

Capabilities:

Alice {game.bin: execute}, {func.sh: read, execute},
{readme.txt: read}

Chris {bill.doc: read,write}, {game.bin: read, write, execute},
{func.sh: execute}, {readme.txt: read}

Greg {game.bin: write, execute}, {readme.txt: read}
Jess {bill.doc: read}, {game.bin: execute}, {readme.txt: read,write}

bill.doc game.bin func.sh readme.txt

Alice - {execute} {read,
execute}

{read}

Chris {read,
write}

{read, write,
execute}

{execute} {read}

Greg - {write, execute} - {read}

Jess {read} {execute} - {read, write}

Windows

● Windows registry
○ Core place for system control
○ Target for hackers
○ Controls multiple computers

● Windows domain + AD
○ Computers sharing things

such as passwords

● Principles:
○ SAM format - old but used in most places
○ UPN - more modern

● Login - happens in different ways depending if computer is alone or
part of a network

● More levels than *NIX
○ Hardware, System, Administrator, Users

Windows

● Library loading is a problem.
● Viruses are very common and easy.
● Windows adding features to make OS less predictable

○ Image randomization (OS boots in one of 256 configurations)
○ Services restart if failed (not the best practise for security):

■ Vista+ sets some critical services to only restart twice, then manual restart
required giving attackers just 2 attempts

● NTFS is much more secure than FAT32 & DOS.
○ Adds two ACLs:

■ DACL: Reading, writing, executing, deleting by which users or groups.
■ SCAL: for defining which actions are audited/logged, e.g. on activity being

successful/failed.
○ Compression, encryption.

Link to some Windows security resources and attack vectors for further study

https://github.com/CompassSecurity/security_resources#windows--active-directory-ad

Bell-LaPadula Model

● Bell-LaPadula confidentiality policy, “read down, write up”
○ Simple security property

■ Subject (Greg) cannot read object of higher sensitivity
○ Star property (* property)

■ Subject cannot write to object of lower sensitivity.
○ Strong star property (Strong * property)

■ Subject cannot read/write to object of higher/lower sensitivity.

Greg Greg Greg

Read Write Read/Write

Simple Security Property * Star Property Strong * Star Property

Higher
Sensitivity

Lower
Sensitivity

Biba Integrity Model

● Biba integrity model - “read up, write down”
○ Simple security property

■ Subject (Greg) cannot read object of lower integrity
○ Star property (* property)

■ Subject cannot write to object of higher integrity.
○ Invocation property

■ Subject/process cannot request higher integrity access.

Greg Greg

Read Write

Simple Integrity Property * Star Integrity Property

Higher
Integrity

Lower
Integrity

Clark-Wilson Integrity Model

● Bell-LaPadula is good for confidential systems
● Biba is good for integrity-preserving systems
● What about businesses/industry processes where you need both?

○ Clark-Wilson Model
■ Limits direct interaction between subjects and objects
■ Prevent unauthorized subjects from modifying objects
■ Prevent authorized subjects from making invalid modifications to objects
■ Maintain internal/external consistency

ObjectSubject Program

Authorized application

Other Models

● Brewer and Nash model (Chinese wall model)
○ Allows dynamically changing access permissions.
○ Designed to mitigate conflict of interest.

● Graham-Denning Model
○ Computer security model.
○ Concerned with how subjects/objects are created/deleted securely, how privileges are

assigned, and how ownership is assigned.

● Harrison-Ruzzo-Ullman (HRU) model
○ Extends on Graham-Denning model, maps subjects (S) objects (O) and access rights to

an access matrix (P) where each cell contains the rights (R).
○ Constrains subjects from access to specific commands that would gain additional

privileges, for example restricting access to a command that would grant read access
to other documents.

Briefly on Security Evaluation

● Common Criteria (CC)
○ Originated with ITSEC, CTCPEC, and TCSEC
○ Concepts for evaluation (TOE, PP, ST, SFRs, SARs, EAL)
○ Often criticized as an expensive (hundreds of thousands £) government-driven

process with poor track-record of actually detecting vulnerabilities.
■ Researcher suggests CC discriminates against FOSS-centric organisations.

○ Success stories:
■ Smart cards

○ Failure cases:
■ Operating systems

● UK government uses alternatives to
fast track certain scenarios, but these
aren’t recognised internationally.

Protection Rings

● Hardware based access control.
○ Also used to protect data and functionality

from faults.
● Each subject and object are assigned a

number based on importance.
● Decisions are made by comparing

numbers:
○ If subject < object, disallow access.

● x86 CPUs offer four rings, but typically
(Windows/UNIX) only two (0,3) are used.

● ARM implements 3 levels (application,
operating system, and hypervisor).

0: Operating system kernel.
1: Operating system.
2: Utilities.
3: User processes.

 0 1 2 3

Granting Root Privileges

Real situation not long ago:

● Phil is a PhD student who has not taken this security course. He’s
deploying his mathematical model to the web for the industry that’s
funding him.

● His supervisor, Jacob, has a big UNIX server with 30 other PhD projects
and lots of highly-sensitive data.

● Phil says “Jacob, I don’t have permission to copy the files to /var/www - can
you give me sudo access?”

● Jacob googles “How to add another user as root”, finds the command:
“sudo adduser phil sudo”, types it in. Jacob goes back to his office. Done!

This kind of situation is VERY common.

*NIX Recap

● UID 0 & root
● inode data structure & nearly everything is a file
● /etc/passwd
● /etc/shadow
● /etc/group
● File access - RWX

○ Can be converted to ACM

● Link vulnerabilities
○ Link to secure file, run command on linux to make real file insecure

● Devices file
○ /dev/tty

■ Often read/write to all

● Don’t give lots of people root
○ setuid, sudo

Securing BIOS and Bootloader

● BIOS should have a password for changing the settings
○ If you have physical access, then you can reset bios easily by

resetting the CMOS
○ So lock the machine physically (require a key)

● Bootloader (e.g. GRUB) should have a password for
changing the settings
○ Go into edit mode, then append to the linux kernel options in

init=/bin/bash
○ This will directly boot in a shell with root privileges

● On Windows there is a bootable USB that you can make
that allows full access to the registry that allows you to
edit users/passwords
○ http://www.chntpw.com/burn-to-cd-usb/

Hardware
Keylogger

http://www.chntpw.com/burn-to-cd-usb/

