
Chris G. Willcocks
Durham University

Cyber Security
Database Security

An overview of databases

● Database:
○ An organised collection of data.

● Relational database:
○ Collection of schemas, tables,

queries, reports, views, and other
elements.

● DBMS:
○ MySQL, PostgreSQL, MongoDB,

Oracle, …

● Database Administrator:
○ Defines the rules that organize the

data and controls access.

● NoSQL:
○ Sometimes “non-relational”, or

“not only SQL”.

Database Management System

● DBMS roles:
○ Concurrency
○ Security
○ Data Integrity
○ Administration procedures

■ Change management
■ Performance monitoring/tuning
■ Backup & Recovery

○ Automated rollbacks, restarts and recovery
○ Logging/auditing of activity

DBMS consists of:

1. The data
2. The engine

○ Allows data to be:
i. Locked
ii. Accessed
iii. Modified

3. The schema
○ Defines the database’s

logical structure

Popular DBMS

● Top databases (Feb 2024)
● Still dominated by relational DBMS
● But it’s not all about SQL injection any more...

NoSQL
NoSQL
NoSQL

Database application types

← GCP Guidelines

AWS Guidelines

Relational / SQL databases

SELECT Name FROM Users WHERE City = Durham; GRANT SELECT ON ANY TABLE TO Chris

SELECT * FROM Users WHERE Lat_N > 39.7;

SELECT ID, Name, City FROM Users ORDER BY Lat_N;

UPDATE Users SET Bitcoins = Bitcoins + 0.001;

ID Name Email City Lat_N Bitcoins

1001 Jess jess@dur.ac.uk Exeter 40 10

1002 Chris chris@dur.ac.uk Durham 33 7

1003 Greg greg@dur.ac.uk Toulouse 47 0.001

1004 Anna anna@dur.ac.uk Durham 21 0.2

Table: Users

NoSQL databases

>>> from pymongo import MongoClient
>>> uri = "mongodb://user:password@example.com/the_database?authMechanism=SCRAM-SHA-1"
>>> client = MongoClient(uri)
>>> db = client['test-database']
>>> collection = db['test-collection']
>>> import datetime
>>> post = {"author": "John",
... "text": "My first blog post!",
... "tags": ["python", "pymongo", "monty"],
... "date": datetime.datetime.utcnow()}

Created lazily - none of the commands have
actually performed any operations on the server
until the first document is inserted into them:
 >>> posts = db.posts
 >>> post_id = posts.insert_one(post).inserted_id
 >>> post_id
 ObjectId('...')

Database security overview

Source: Qualys, Inc.

● Vulnerabilities not necessarily proportional to popularity

5 year vulnerability trend Industry-wide database vulnerabilities

years

Database security overview

1. Primary concepts
○ Authentication - who are you?
○ Authorization - what are you allowed to do?
○ Encryption - protecting the data
○ Auditing - what did you do?

Source: Oracle

2. Other important concepts
○ Redaction - disguise sensitive data

on returned results (oops!)

○ Masking - creating similar but
inauthentic version of the data for
training/testing

○ Firewall - threat patterns, approved
whitelisted commands, blacklist
(harmful) commands, monitor for
data leakage, evaluate IP
address/time/location

○ Integrity - data should be accurate
and tolerant to physical problems
(hardware failure, power failures)

https://euobserver.com/coronavirus/150799
https://fragdenstaat.de/dokumente/8409-apa_-_astrazeneca/

Database security background

● Vast majority of records breached are from database leaks
○ Not surprising that hackers are going after databases

■ They contain transactional information, financial details, emails, ...

● Relatively small portion of security budget is spent on data center
security. Even in the modern day lots of “new” tutorials are bad.

Database vulnerability popularity

1. Excessive and Unused Privileges
2. Privilege Abuse
3. SQL injection
4. Malware
5. Weak audit trail
6. Storage media exposure
7. Exploitation of vulnerabilities and

misconfigured databases
8. Unmanaged sensitive data
9. DoS

10. Limited security expertise and education

Rankings & Source: Verizon.

#1 Excessive and unused privileges

● Privilege control mechanisms for job roles have often not been well
defined or maintained.

● People join the company, leave the company, change roles, their
privileges often grow and aren’t scaled back to be inline with their job
requirements.

● Probably the greatest chance of impact in organisations.

Anna

Chris Jess

Greg

Lucy

Anna

Chris Jess

Greg

Lucy

*

*

*

** **

*

*

*

*

#2 Privilege abuse

● People who have legitimate use of data, but choose to abuse it.
○ e.g. people doing things to the neighbors or friends

● Employees often feel entitled to take data with them
○ They feel they were a part of creating this data, therefore they will take it with them.
○ Lots of high-profile cases

■ Celebrities
■ Political figures

Image Source: Imperva
Content: Verizon

#3 SQL injection

● Inserting or injecting unauthorised
malicious database statements
somewhere in the application or database
that gets executed by the database itself.
○ Making critical data available to be viewed,

copied or changed.

● Typing structured query language
commands to the database

● In many times the database opens up and
spits out its contents

● “... one SQL injection attack can bring in
big bucks. It’s a no-brainer that you should
make this problem a top priority”

#3 SQL injection & prepared statements

● Prepared statements are a good defense against SQL injection.
● Original, insecure code:

email = request.getParameter("email")

password = request.getParameter("password")

sql = "SELECT * FROM users WHERE (email =‘" + email +"’ AND password =‘" + password + "’)"

 "SELECT * FROM users WHERE (email =‘chris@dur.ac.uk’ AND password=‘’ OR 1=1 --)"

result = statement.executeQuery(sql)

example
exploit

Prepared statements (parameterised queries)

● Becomes:
email = request.getParameter("email")

password = request.getParameter("password")

sql = "select * from users where (email ='" + email +"' and password ='" + password + "')";

 sql = "select * from users where email = ? and password = ? ";

result = statement.executeQuery(sql, [email, password])

parameterizes the SQL statement with the email
and password data (doesn’t mix code and data)

Hacking with sqlmap

● Full support for MySQL, Oracle, PostgreSQL, Microsoft SQL Server,
Microsoft Access, IBM DB2, SQLite, Firebird, Sybase, SAP MaxDB,
HSQLDB and Informix database management systems.

inurl:”.php?id=”

sqlmap -u http://site.php?id=173 --dbs

sqlmap -u http://site.php?id=173 -D <database> --tables

sqlmap -u http://site.php?id=173 -D <database> -T <table> --columns

sqlmap -u http://site.php?id=173 -D <database> -T <table> -C
users,passwords,emails, ... --dump

Try to get lots of databases

Get list of tables

Get list of columns

Dump the data (can select multiple columns)

http://mysite?id=173
http://mysite?id=173
http://mysite?id=173
http://mysite?id=173

Hacking with sqlmap

1. Input url (-u)
2. Get databases --dbs

Databases

Hacking with sqlmap

3. Get tables and columns (--tables,
--columns)

Hacking with sqlmap

4. Dump the data
(--dump)

5. Crack password
hashes

Other fun options

Get interactive operating
system shell

#4 Malware

● We’ve said that the vast majority of breaches are with databases
a. But most breaches involve malware.

● Organisations are quickly compromised and then their data goes out
the door within minutes or hours.

● It takes weeks to months to discover this has happened.
● It takes weeks to months to contain and remediate the problem.
● Common strategy:

a. Spear phishing (emails)
b. Malware
c. Credentials stolen
d. Data being stolen

#5 Weak audit trail

● We get a much clearer
picture of what’s going
on with more detail and
resolution

● Most organisations don’t
record all the details that
you need to deal with
the aftermath of these
situations

● Hard to trace back to
individual users

Things you may wish to audit

● Auditing
○ Undocumented create, drop, alter, grant, deny, revoke (events should be

investigated)
○ Select, insert, update, delete, merge, lock table (useful for deep non-daily analysis)
○ Access history (check for users accessing data they shouldn’t have)
○ Permission changes
○ Unauthorized access

■ Failed login attempts by non-existent users or wrong passwords
○ Failed & successful login attempts

● Performance monitoring
○ DoS, alerts, automated response rules

● Version control

Auditing example

Source: ApexSQL

#6 Storage media exposure

● After spear phishing and malware, it’s often the database backups that
are actually leaked in the end.

● Often something that’s completely unprotected from an attack
● Shows up in the details of a variety of security breaches.

○ Need to monitor and look at the media itself.

Database backup 3-2-1

Availability vs Confidentiality

3-2-1 rule of backup
“Disc Rot”

#7 Database vulnerability exploitation

● Oracle, Microsoft and IBM have big market share periodically patches
and fixes.
○ Patches are rolled out and made available to their customers and wider community.

● ...But companies rarely have resources and/or abilities to immediately
apply the patches to their systems.

● 28% of oracle users have never applied one of the database patches or
don’t know if their organization have done that. *

● 10% take a year or longer to apply a patch. *
○ Requirements for a stable business etc.

*Source: Verizon

#8 Unmanaged sensitive data

● You can easily end up with some of your sensitive data being used in
testing environments, or R&D environments and not being managed
properly.
○ Training
○ Use Data Masking

Source: Oracle

#9,10 DoS & limited expertise

● DoS attacks can happen to databases.
● With databases:

○ Attackers overload server resources (memory usage, CPU)
○ Flooding database with queries that cause server to crash

Limited expertise & security training:

● Majority of organisations experienced staff related breaches when
policies weren’t well understood.
○ The very people controlling the policies on devices either don’t understand the

business aspects or technical aspects of the vulnerability.

● Small business (over half of them) don’t even have a position for
educating their staff about security risks, e.g. a software engineer
whose learnt about software security.

Obscure queries

● Hide your real query in a more complex query
○ Harder for the system to identify the real query

● Example “Determine who has self-reported drug use”

SELECT * FROM Students WHERE (Attend=“0” OR Attend=“1”) AND

((Attend=“0” AND Drugs=“1”) OR (Attend=“1” AND Drugs=“1”))

OR (Attend<>“0” AND Attend<>“1”) OR College=“Ustinov”

● Simplifies to:

SELECT * FROM Students WHERE Drugs=“1”

Inference attacks & differential privacy

● Data mining technique:
○ Analyze data in order to illegitimately gain knowledge of subject or database.
○ Sensitive information can be leaked if hacker can infer real value with high confidence.

● Occur when someone is allowed to execute queries that they’re
authorized for, but by executing those queries they are able to gain
access to information for which they are not authorized.

Example paper:

“Inference Attack on Browsing History of Twitter Users Using Public Click
Analytics and Twitter Metadata”, IEEE Transactions on Dependable and
Secure Computing.

Approach to database security

Good approach:

1. Discovery and assessment
○ You can’t protect against problems if you don’t know they exist.
○ Quickly identify sensitive data and assessing vulnerabilities/misconfigurations.

2. User rights management
○ Make sure you have a thorough process to review and eliminate excessive user rights.

3. Monitoring and blocking
○ Have procedures in place to monitor activity and block attempted policy violations

4. Auditing (creating a trail)
5. Protecting the data

○ Storage encryption, tamper-proof audit trail

6. Non-technical security
○ Raise awareness and cultivate experienced security professionals

Approach Source: Imperva

