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Foundational statistics probability density function

Definition: Probability density function

A function f : R® — R is called a probability
density function if

Ve e R: f(z) >0,

and it's integral exists, where

f(z)dz =1.
RTI,
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Foundational statistics probability mass function

Definition: Probability mass function

This is the discrete case of a probability density W

function, which has the same conditions, but
where the integral is replaced with a sum 0.2 1

Y P(X=mz)=1

0.1+
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Foundational statistics joint probability density function

fX,Y(x7y)

Definition: Joint density function

The joint density function fx vy (x,y) for a pair of
random variables is an extension of a PDF (non-
negative function that integrates to 1) where

P((X,Y)€e A) :/ fx,v(z,y)dzdy

can be more than a pair A
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Foundational statistics marginal probability density function

Definition: Marginal density function

The marginal density for the random variable X
is where we integrate out the other dimensions

fX('T):/ fX»Y('Tay)dya a
and similarly

fr(y) = /jo fxy(z,y)de.
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Foundational statistics conditional probability density function

Definition: Conditional density function

The conditional density for pairs of random
variables is

fxy (@Y =y) = fxfyi((xy;y)

which implies that the joint density is the
product of the conditional density and the
marginal density for the conditioning variable

Ixy(@,y) = fxy(zly) fr (v)
= fyix (ylz) fx ()
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Foundational statistics expected values

~
<
E

Definition: Expected value

The expected value or mean value for a
continuous random variable is defined as

E[X] :/ zfx(z)dx
also for a measurable function of X

Elg(x)] = [ " o) fx(@) dz
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Foundational calculus derivative of a function

Definition: Derivative

For h > 0 the derivative of a function f: R — R
at x is defined as the limit

secant

Zo I’0+h
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Foundational calculus useful derivatives in deep learning

Example: Useful derivatives
These are some useful derivatives of common
activation functions

1, ifz>0
1. ReLU'(z) =4~ ="
0, otherwise
2. tanh’(z) = 1 — tanh?(x)
3. sigmoid’(z) = sigmoid(x) - (1 — sigmoid(z))
4. sin’(x) = cos(z)
Try these derivatives and test some more on
https://www.desmos.com/calculator

9 ||— RelLU
— tanh
. ——sigmoid
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Foundational calculus rules of differentiation

Rules of differentiation

The sum rule is defined
(f(@) +9(@)" = f'(2) + 4 ()
The product rule is defined
(f(@)g(@))" = f'(@)g(x) + f(2)g'(x)

The quotient rule is defined

(f(x))' _ f'(@)g(@) — f(z)g'(x)
g(x)

The chain rule is defined

(9(f (@) = (g0 ) (z) = g'(f(@))f (@)

Rules of differentiation

The power rule is defined

(xn)/ _ nmn71

Example: What is the derivative of

2z > power rule
=g'(f(x)f'(x) > chain rule
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Foundational calculus partial derivatives of a function

Definition: Partial derivatives

R a . 2
For a function f : R* — R of n variables z, ..., . Example function: f(z,y) = 4z + 7y

the partial derivatives are defined

ﬂ = [l f(x1+h,$27...,$n)_f(x)
Oxr1  h—0 h
: _l,l_ilfl!!!!.-- ;
of _ lim f(z1, .o, @n-1,2n + h) — f(x)
0x,  h—0 h

which get collected into a row vector known
simply as the gradient of f with respect to x
df _[906) | Of)] _ grxn

Vaef =3 = S el
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Foundational calculus rules of partial differentiation

Rules of partial differentiation

These rules of differentiation still apply,

replacing derivatives with partial derivatives

The sum rule is defined

b af
2 () + 9(x) = 52 + 22

The product rule is defined

o (16969 = g0 + 1) 22

The chain rule is defined

(90 )6 = 5 (a(769) = 45k

Calculate the partial derivative of
zt — sin(y2 + ;r) w.r.t. y

By use of the chain rule

8—y(z4 —sin(y® +z)) = —cos(y” + z)2y

Also we can calculate for z and z

5(24 —sin(y® + 7)) = —cos(y” + )
% (24 — sin(y2 + a:)) =423

Try your own and test your answers on
https://www.wolframalpha.com
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Foundational calculus the jacobian matrix

Example function f : R? — R3

t,s) = (sin(t) + s, cos(t), &
Definition: the Jacobian matrix F{t, £) = {sin(f) ®). %

The collection of all first-order partial derivatives &
of a vector-valued function f : R™ — R™ 1
Ofilx) .. 9fi(x) C
df Oz Oz,
= =Y = 0 : ¢ =08 (
Jf va dX . . bl
0.fm (%) . 9 fm (%)
. ofi
J =
£(i,4) o1

x,s =10
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Mathematics of neural networks neural network functions

Definition: multilinear map & vector sum Five Three One

A multilinear map is a function f : R — R™ inputs neurons output
X1
fx)=Wx+b
0
—(Wx+b)=W X2
ox (WX +P) —
A vector summation f : R" — R X3

=1l

X4
[ 0z1 O Oy,
Jp = {871,872,.. 87] =[1,1,..,1] .

—
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Mathematics of neural networks computational graphs

Example: computational graphs
Consider a neural network with one linear layer
f(x) =Wx+b, grad=False t

and r as the squared L, (Euclidean) norm J l

, , X%@—)@—)@—)@—) loss
T(X)=||X||2=Zwi7 T T
o W b < grad required

where the network loss function f : R* — R is
the cost from ground truth labels t

loss = ||f(x) — t][3 = [[(Wx +b) — t|[5.

This is implemented as a computational graph
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Mathematics of neural networks reverse mode of differentiation

Backpropagation: reverse accumulation

Backpropagation is a reverse accumulation
method suited for f : R® — R™ where m < n

(usually m = 1). The algorithm is: "

1. set requires_grad=True for any parameters l
we want to optimise (W and b) < ‘ /w :/\@i\loss
2. calculate the loss by a forward pass (feed T T
the network x and see what the error is)
w b

e when doing this, save intermediate o
: Oloss  Oloss
values from earlier layers oW b

3. from the loss, traverse the graph in reverse
to accumulate the derivatives of the loss at
the leaf nodes
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Further study recommended books £

Deisenroth et al., 2020 Goodfellow et al., 2016 Calin, 2020

More examples Undergrad level PhD level

WATHENATICS 07
WACHINE LEARNING

I Deep Learning
Architectures

A Mathematical Approach

[ Marc Peter Deisenroth
A. Aldo Faisal
Cheng Soon Ong

&) Springer
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