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Generalisation theory universal approximation theorem

Theorem: universal function approximator

Arbitrary width
A network with a single hidden layer, containing
a finite number of neurons, can approximate any
continuous function under mild assumptions.
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Generalisation theory universal approximation theorem

Theorem: universal function approximator

Arbitrary depth (fixed width)
Does the theorem still hold for fixed width and
arbitrary depth? Yes!

For a network of n inputs andm outputs, [1]
show universal approximaton holds true for:

• width n+m+ 2 for almost any activation
function

• width n+m+ 1 for most activation
functions

Short YouTube visual proof v

· · ·
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https://www.youtube.com/watch?v=6-SORkCLYPM


Generalisation theory empirical risk minimisation

Learning the data distribution

So what is it we want exactly?

• P (Y |X) discriminative model (classification)
• P (X|Y ) conditional generative model
• P (X,Y ) generative model

We want to learn the probability density function
of our data (natures distribution) YX

P

The data distribution P (X,Y )
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Generalisation theory empirical risk minimisation

Finding a model

Lets illustrate this in 1D, but try to imagine it in
ND. Given the target probability distribution of
our data

g(x) = P (X,Y )

we want to find (design) a model f(x; θ) with
parameters θ and optimise θ such that

f(x; θ) = g(x)
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Generalisation theory empirical risk minimisation

Optimising the model

The total error is therefore the entire area.
Modifying the parameters θ will cause the area
to change, where we want to find

θ̂ = argmin
θ

∫
L(f(x; θ), g(x))dx.

where L is a ‘loss function’, e.g. a 0-1 loss function
L(x̂, x) = I(x̂ 6= x) or a mean squared error loss.

The solution is a function f that has the capacity
to exactly represent g(x) 1 2 3 4
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Generalisation theory empirical risk minimisation

The generalisation problem

However there’s a big problem:

In practice, we can’t observe all of g(x)

This means:

1. We don’t know how smooth the function is
between the observations

2. Noise can be difficult to interpret
3. Optimisation is highly sensitive to the

sampling process 1 2 3 4
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Generalisation theory empirical risk minimisation

Definition: empirical risk

The expected error (or risk) is the average error
over the entire space, which we can’t compute:

E[L(f(x; θ), g(x))] =
∫
L(f(x; θ), g(x))dx.

Therefore we minimise the empirical estimate
of the risk as an average over the samples:

E[L(f(x; θ), g(x))] ≈ 1

N

N∑
i=1

L(f(x; θ), g(x)).
1 2 3 4
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Generalisation theory empirical risk minimisation

The role of noise

Given that the shape of the distribution outside
of the observations is unknown, it is easy to
overfit to noise.
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Generalisation theory empirical risk minimisation

Out-of-distribution data

Usually the training dataset collection process
draws samples from the data space in a way that
is not independent and identically distributed
(abbreviated i.i.d.) to the expected testing
(operational) conditions of the model.

Sampling data in a way that is representative of
the task/testing/operational distribution is
extraordinarily difficult to do properly. It is often
a worthwhile investment though!
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Generalisation theory no free lunch theorem and Occam’s razor

Definition: no free lunch theorem

We can use methods such as cross validation to
empirically choose the best method for our
particular problem. However, there is no
universally best model — this is sometimes
called the no free lunch theorem [2].

Definition: Occam’s razor

‘Prefer the simplest hypothesisH that fits the
data.’ In the case of deep learning, this implies
the smoothest function that fits the data. 1 2 3 4
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Generalisation theory increasing capacity to double descent

Definition: double descent

Traditionally, we know that increasing the
parameters lowers the bias (fitting), but the
variance (test risk) will eventually reach a ‘sweet
spot’ (first dashed line) and start to increase
again.

The full story has a double descent curve [3], as
higher capacity functions past the interpolation
threshold (second dashed line) lead again to
smoother fitting (Occam’s razor).

2 4 6

0.5

1

1.5

2

capacity of H

ris
k

training
testing

13 / 25



Function design natural signals

Natural signals

In nature, the data signal follows patterns:

• There are repetitions in space and time
• There are various symmetries
• Signals are hierarchical

Therefore we can design our functions to fit
these patterns effectively

Further reading about deep learning through a
physics lens in [4]
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Function design convolutional neural networks

Definition: CNNs

A convolution sums the
Hadamard product between a
sliding area and the convolution
kernel. Each output feature map
does this for each input channel.

This 2D convolution example is a
4× 4 kernel with a stride of 2 and
1 padding. It has 3 input channels
and 4 output features.

kernel
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stride
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input channels (features)
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Function design convolutional neural networks

Hierarchical design

Each feature map output is essentially an
image whose intensity values are ‘feature
detectors’ from the layer before. The
images here are learnt kernel weights.

The ‘width’ vs ‘depth’ problem is based on
what type of detectors you need from the
dataset, such as to minimise the task risk.

edges
blobs

contrast

shapes
textures
curves

eyes
legs
tyres

faces
dogs
cars

16 / 25



Function design recurrent neural networks

Definition: recurrent neural network

RNNs reuse parameters across multiple
timesteps. They can be unrolled to better
understand their dynamic behaviour.

= ...h ht−1 ht ht+1 ht+n

the cat sat mat

dog sat on and

17 / 25



Function design deep residual networks

Definition: residual connections

These are shortcuts that skip over two or
three layers that contain nonlinearities
and batch normalisation between then.

Pseudocode: residual block
class ResidualBlock(nn.Module):

def init(n):
res_block = [
nn.Conv2d(in_f=n, out_f=n,3,1,1),
nn.BatchNorm2d(n),
nn.ReLU(),
nn.Conv2d(in_f=n, out_f=n,3,1,1),
nn.BatchNorm2d(n) ]

def forward(x):
return F.relu(x + res_block(x))

+ + +...

loss landscape
without residuals

loss landscape
with residuals [5]
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Regularisation early stopping and annealing

Before we define regularisation, first lets examine two ways to prevent overfitting in high-
capacity models:

Definition: early stopping

This is just where we stop training early.

Definition: annealing

If we decrease the learning rate slowly to zero,
this has a similar effect to early stopping (but
allows more experience in the process).
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Regularisation the effect on model capacity

Definition: regularisation

Regularisation is where we add prior information
about functions inH such as to reduce
generalisation error.
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Regularisation data augmentation

Definition: data augmentation

If it is expected that small transformations (e.g.
rotations, zooms, flips, blurs) will occur in testing,
the training samples can be augmented.

However too much augmentation (e.g. too much
zoom) will result in poor fitting. In the extreme
case it may even change the class label, for
example 180◦ rotations in MNIST:
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Regularisation dropout and Tikhonov regularization

Definition: dropout

Dropout is where each hidden unit is set to zero
with some probability (e.g. 0.2). The network
can’t rely on any one weight, so it spreads its
weights out.

Definition: Tikhonov regularization

Tikhonov regularization (also called weight
decay or L2 regularisation has a similar effect:

L′ = L+ λ||w||22

standard network

× ×
× × ×
× ×

after dropout
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Regularisation ensembles

Definition: an ensemble

An ensemle is where multiple different
models are trained, and then the
predictions are combined at test time, for
example by averaging or max voting.

This simple technique has shown to be
highly successful in winning kaggle
competitions, where there is evidence to
suggest the success is due to the ability
for ensembles to capture multiple modes
of the solution space [6].

space of solutions

training validation
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Take Away Points

Summary

In summary, designing architectures:

• is a scientific process
• choose the right functions to fit the data
• choose your experiments carefully
• consider the double descent graph
• what do you know about the signal?
• what does the task need?
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