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Introduction recap

The data distribution P(X,Y)

Recap: learning the data distribution

So what is it we want exactly?
e P(Y|X) discriminative model (classification)
e P(X]Y) conditional generative model a,
e P(X,Y) generative model

We want to learn the probability density function
of our data (natures distribution)
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Introduction definition

Definition: Generative models learn a joint distribution over the entire dataset. They are
mostly used for sampling applications or density estimation:

Inference: sampling

A generative model learns to fit a
model distribution over observations
so we can sample novel data from the
model distribution, Xnew ~ Pmodel (X)

Inference: density estimation

Density estimation is estimating the
probability of observations. Given a
datapoint x, what is the probability
assigned by the model, pmoder (x)?
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Introduction probability examples

Linguists
e What is the probability of a sentence? P(sentence)

e P(‘the dog chased after the ball’)
e P(‘printers eat avocados when sad’) ~ 0

Meteorologists

e What is the probability of whether it will rain? P(rain)
Artists

e What is the probability of this image being a face? P(face)
Musicians

e What is the probability this sounds like Beethoven? P(Beethoven)
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Density estimation maximum likelihood estimation

Definition: maximum likelihood estimation

Maximum likelihood estimation (MLE) is a
method for estimating the parameters of a
probability distribution by maximizing a
likelihood function, so that under the model the
observed data is most probable

0" = arg max pmodel (X; 0)
0

n
= arg max H Pmodel (X3 0)
0 i=1
~ arg max Expy,.. [10g Pmodel (X3 0) ],
0

where X = {x',x?, ..., x"} are from paata(x)
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Density estimation cumulative distribution sampling

Example: cumulative distribution sampling Xnew ™ Pmodel (X)

Given the CDF Fx (x), the antiderivative of
fX (X) = pmodel(x) ' €.8. where Fl(x) - medel(X)

Fx(o) = [ Oo fx(w) du

we can sample new data by transforming

random values z from the uniform distribution

z ~ U via the inverse of the CDF Fy'(z).
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Density estimation histogram density estimator

Definition: histogram density estimator

Histograms divide the space, e.g. [0, 1], into
bins B, Bo, ..., By and counts the elements
inside the bins

Phist(x) = Z h] I(x € Bj)

where 6, is the proportion of observations in
the bin, scaled to integrate to one

. 1< p
6; = 521@; € By)
g=il

Definition: kernel density estimator

Another popular approach for simple cases
is to employ techniques known as kernel
density estimators

. Zhd (Lxsx).

where at each point z, pxge (z) is the average
of the kernel function centered over the data
points X;, and h is the bandwidth

Inevitably there will be a bias/variance
trade-off as we fit the data
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Density estimation problematic densities

Example: problematic densities

In a more complex setting, we may have a
density such as the ‘Bart Simpson’ density, as
Nando de Freitas likes to call it

p(z) = ; (2;0,1) Z¢ (j/2) —1,1/10)

where ¢ is the normal density with mean x and
standard deviation o. This density cannot be 3 _—2 _1 1 2 3
sufficiently estimated with a normal distribution,

as the result is over-smoothed (blue).
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Divergence measures Kullback-Leibler divergence

Definition: Kullback-Leibler divergence

We want to measure how different two P
distributions are. The Kullback-Leibler
divergence (also called relative entropy) is one
such measure that is asymmetric and
non-negative:

Dxr(pllq) = /p(X) log<1ﬁ> dx

q(x)
where Dxx(p||p) = 0. Practically, the KL ‘ ‘ ‘ X
divergence is sensitive at the tails of the -3 -2 -1 L 2 3 4

distribution.
Click to try on Desmos (%'
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https://www.desmos.com/calculator/2sboqbhler

The KL divergence can be rewritten

Dxi(pllg) = /p(x) 1°g<%> >

= / p(x)log p(x) dx — / p(x) log g(x) dx

=—H(p)+ H(p,q)

where H(p, q) is the cross entropy and

H(p) = H(p,p) is the regular entropy. This is
minimizing the negative log-likelihood, the same
as maximizing the likelihood

H(p,q) = —/p(X) log q(x)

Divergence Measures cross entropy and optimal transport

Definition: Cross entropy

Definition: Wasserstein metric

It's worth mentioning an elegant metric
between two distributions, which is from
the optimal transport problem formalised
by Gaspard Monge in 1781. If interested,
watch Cédric Villani on YouTube discuss
this topic and see examples in [1].

In 1D, the first Wasserstein metric (or
earth mover's distance) can be written
between the two CDF's Fy and F; where

W(Fl,FQ) = / |F1(.IJ) - FQ(IE)|dCL’

This is the minimal (optimal) cost from
moving dirt between the two distributions
whose CDF's are Fy and F» respectively.
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Generative networks definition

Definition: generative networks

The goal of generative networks is to take some
simple distribution, like a normal distribution or latent space
a uniform distribution, and apply a non-linear

transformation (e.g. a deep neural network) to i :

obtain samples from pgata(x)

In 1D, we can say G = F.|.(x) and sample
z ~ U, and similarly in ND — but assuming the
determinant of the Jacobian and the inverse of G
are computable, which is a large restriction.
Ideally we want z in low dimensions
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Generative networks deep autoencoders

Definition: autoencoder

An autoencoder is a feedforward neural network
that is trained to predict its inputs, thus learning
an identity

EAE = Ex"’pdata[ﬁ(x’ D(E(X))) ]

where L is a loss function such as mean squared
error. The encoder function £ : R" — R™
(usually) compresses the dimensionality of the
data n < m to a latent encoding z = E(x), which
is then recovered by the decoder D : R™ — R",
where x = D(z). It's difficult to sample from the
latent space, so its not really a generative model.

latent space

Link to Colab example &'
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https://colab.research.google.com/gist/cwkx/e3ef25d0adb6e2f2bf747ce664bab318/conv-autoencoder.ipynb

Generative networks variational autoencoders

H
.
.
‘

Definition: variational autoencoders

Variational autoencoders are generative models,
as they impose a prior over the latent space p(z),
typically z ~ N (0, I') which can be sampled from.

Za E(X) = Q(Z|X) X ~ D(Z) = p(x|z) X~ pdata

The VAE loss is the negated expected 3 @ %H z

log-likelihood (the reconstruction error) and the
e Z=u+0o e

prior regularization term:

(XlZ)p( ) __ ppixel .
one = = [og P5ERE | = 2825+ e 2~ N(0.D

where
‘C'Fenc(gll - _Eq(z|x) [logp(x‘z)]
»Cprior - DKL(q(Z|X) ||p(Z))
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Generative networks autoregressive models

Definition: autoregressive networks

These models assume a natural

sequential ordering of the data, then
factorize the joint probabilities over Q
symbols (for text) or pixels (for images) as

the product of conditional probabilities [,|_h? = [_dp he PR -

p(x)zﬁp(acn\;rl,xg,...,mn_l) (B (g (g (g

=t the cat sat

Examples: text [2], audio [3], and
images [4]
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https://www.deeplearningbook.org/
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