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Introduction recap

Recap: learning the data distribution
So what is it we want exactly?
• P (Y |X) discriminative model (classification)
• P (X|Y ) conditional generative model
• P (X,Y ) generative model

We want to learn the probability density functionof our data (natures distribution) YX

P

The data distribution P (X,Y )
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Introduction definition

Definition: Generative models learn a joint distribution over the entire dataset. They aremostly used for sampling applications or density estimation:
Inference: sampling
A generative model learns to fit amodel distribution over observationsso we can sample novel data from themodel distribution, xnew ∼ pmodel(x)

Inference: density estimation
Density estimation is estimating theprobability of observations. Given adatapoint x, what is the probabilityassigned by the model, pmodel(x)?

sampler

density
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Introduction probability examples

Examples

Linguists
• What is the probability of a sentence? P (sentence)

• P (‘the dog chased after the ball’)
• P (‘printers eat avocados when sad’) ≈ 0

Meteorologists
• What is the probability of whether it will rain? P (rain)

Artists
• What is the probability of this image being a face? P (face)

Musicians
• What is the probability this sounds like Beethoven? P (Beethoven)
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Density estimation maximum likelihood estimation

Definition: maximum likelihood estimation
Maximum likelihood estimation (MLE) is amethod for estimating the parameters of aprobability distribution by maximizing alikelihood function, so that under the model theobserved data is most probable

θ∗ = argmax
θ

pmodel(X; θ)

= argmax
θ

n∏
i=1

pmodel(x
i; θ)

≈ argmax
θ

Ex∼pdata [ log pmodel(x; θ) ],

where X = {x1,x2, ...,xn} are from pdata(x)
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Density estimation cumulative distribution sampling

Example: cumulative distribution sampling
Given the CDF FX(x), the antiderivative of
fX(x) = pmodel(x) , e.g. where F ′(x) = pmodel(x)

FX(x) =

∫ x

−∞
fX(u) du

we can sample new data by transformingrandom values z from the uniform distribution
z ∼ U via the inverse of the CDF F−1

X (z).

z ∼ U

xnew ∼ pmodel(x)
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Density estimation histogram density estimator

Definition: histogram density estimator
Histograms divide the space, e.g. [0, 1]d, intobins B1, B2, ..., BN and counts the elementsinside the bins

p̂hist(x) =
n∑
j=1

θ̂j
hd
I(x ∈ Bj),

where θ̂j is the proportion of observations inthe bin, scaled to integrate to one
θ̂j =

1

n

n∑
i=1

I(xi ∈ Bj)

Definition: kernel density estimator
Another popular approach for simple casesis to employ techniques known as kerneldensity estimators

p̂kde(x) = 1

n

n∑
i=1

1

hd
K

(
||x− xi||

h

)
.

where at each point x, p̂kde(x) is the averageof the kernel function centered over the datapoints Xi, and h is the bandwidth
Inevitably there will be a bias/variancetrade-off as we fit the data
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Density estimation problematic densities

Example: problematic densities
In a more complex setting, we may have adensity such as the ‘Bart Simpson’ density, asNando de Freitas likes to call it
p(x) =

1

2
φ(x; 0, 1) +

1

10

4∑
j=0

φ(x; (j/2)− 1, 1/10)

where φ is the normal density with mean µ andstandard deviation σ. This density cannot besufficiently estimated with a normal distribution,as the result is over-smoothed (blue).
−3 −2 −1 1 2 3

x

P

9 / 16



Divergence measures Kullback–Leibler divergence

Definition: Kullback–Leibler divergence
We want to measure how different twodistributions are. The Kullback-Leiblerdivergence (also called relative entropy) is onesuch measure that is asymmetric andnon-negative:

DKL(p || q) =
∫
p(x) log

(
p(x)

q(x)

)
dx

where DKL(p || p) = 0. Practically, the KLdivergence is sensitive at the tails of thedistribution.
Click to try on DesmosW

−3 −2 −1 1 2 3 4
x

P
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https://www.desmos.com/calculator/2sboqbhler


Divergence measures cross entropy and optimal transport

Definition: Cross entropy
The KL divergence can be rewritten
DKL(p||q) =

∫
p(x) log

(
p(x)

q(x)

)
dx

=

∫
p(x) log p(x) dx−

∫
p(x) log q(x) dx

= −H(p) +H(p, q)

where H(p, q) is the cross entropy and
H(p) = H(p, p) is the regular entropy. This isminimizing the negative log-likelihood, the sameas maximizing the likelihood

H(p, q) = −
∫
p(x) log q(x)

Definition: Wasserstein metric
It’s worth mentioning an elegant metricbetween two distributions, which is fromthe optimal transport problem formalisedby Gaspard Monge in 1781. If interested,watch Cédric Villani on YouTube discussthis topic and see examples in [1].
In 1D, the first Wassersteinmetric (orearth mover’s distance) can be writtenbetween the two CDF’s F1 and F2 where

W (F1, F2) =

∫
|F1(x)− F2(x)| dx

This is the minimal (optimal) cost frommoving dirt between the two distributionswhose CDF’s are F1 and F2 respectively.
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Generative networks definition

Definition: generative networks
The goal of generative networks is to take somesimple distribution, like a normal distribution ora uniform distribution, and apply a non-lineartransformation (e.g. a deep neural network) toobtain samples from pdata(x)

In 1D, we can say G = F−1
data(x) and sample

z ∼ U , and similarly in ND — but assuming thedeterminant of the Jacobian and the inverse of Gare computable, which is a large restriction.Ideally we want z in low dimensions

G(z)

latent space

z ∼ pcode(z)
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Generative networks deep autoencoders

Definition: autoencoder
An autoencoder is a feedforward neural networkthat is trained to predict its inputs, thus learningan identity

LAE = Ex∼pdata [L(x, D(E(x))) ]

where L is a loss function such as mean squarederror. The encoder function E : Rn → Rm(usually) compresses the dimensionality of thedata n� m to a latent encoding z = E(x), whichis then recovered by the decoder D : Rm → Rn,where x̂ = D(z). It’s difficult to sample from thelatent space, so its not really a generative model.
Link to Colab exampleW

latent space

x ∼ pdata(x) x̂E(x) D(z)
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https://colab.research.google.com/gist/cwkx/e3ef25d0adb6e2f2bf747ce664bab318/conv-autoencoder.ipynb


Generative networks variational autoencoders

Definition: variational autoencoders
Variational autoencoders are generative models,as they impose a prior over the latent space p(z),typically z ∼ N (0, I) which can be sampled from.

z ∼ E(x) = q(z|x), x̂ ∼ D(z) = p(x|z)

The VAE loss is the negated expectedlog-likelihood (the reconstruction error) and theprior regularization term:
LVAE = −Eq(z|x)

[
log

p(x|z)p(z)
q(z|x)

]
= Lpixel

recon +Lprior

where
Lpixel

recon = −Eq(z|x)[log p(x|z)]
Lprior = DKL(q(z|x) || p(z))

z ∼ N (0, I)

x ∼ pdata(x) x̂q(z|x)
µ

σ ×
+ z

ε

E(x)

z=µ+σ�ε

p(x|z)
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Generative networks autoregressive models

Definition: autoregressive networks
These models assume a naturalsequential ordering of the data, thenfactorize the joint probabilities oversymbols (for text) or pixels (for images) asthe product of conditional probabilities

p(x) =
n∏
i=1

p(xn |x1, x2, ..., xn−1)

Examples: text [2], audio [3], andimages [4]

= ...h ht−1 ht ht+1 ht+n

the cat sat mat

dog sat on and
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