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Generative adversarial networks definition

Definition: generative adversarial networks

A generative adversarial network (GAN) is a
non-coorporative zero-sum game where two
networks compete against each other [1].

One network G(z) generates new samples,
whereas D estimates the probability the sample
was from the training data rather than G:

min
G

max
D

V (D,G) = Ex∼pdata(x)[logD(x)]

+ Ez∼pz(z)[log(1−D(G(z)))].

z ∼ N
fake

real

G(z)

D(x)
3
7
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Generative adversarial networks properties

GAN properties

GANs benefit from differentiable data
augmentation [2] for both reals and fakes, but
are otherwise notoriously difficult to train:

• Non-convergence
• Diminishing gradient
• Difficult to balance
• Mode collapse (next slide)

Link to Colab exampleW

z ∼ N
fake

real

G(z)

D(x)
3
7
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https://colab.research.google.com/gist/cwkx/74e33bc96f94f381bd15032d57e43786/simple-gan.ipynb


Generative adversarial networks mode collapse

Definition: mode collapse

This is where the generator rotates through a small subset of outputs, and the
discriminator is unable to get out of the trap. Mode collapse is arguably the
main limitation of GANs.

Figure from [3]. The final column shows the target data distribution and the bottom row shows a GAN rotating through the modes.
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Generative adversarial networks Lipschitz continuity

Definition: Lipschitz function

A function f is Lipschitz continous if it is
bounded by how fast it can change. Specifically if
there exists a positive real constant k where:

|f(x)− f(y)| ≤ k|x− y|,

for all y sufficiently near x. For example, any
function with a bounded first derivative is a
Lipschitz function.

Wasserstein GANs [4, 5] were the first to reduce
mode collapse in GANs by lowering the Lipschitz
constant for the descriminator function.

Distance functions are 1-Lipschitz
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Generative adversarial networks spectral normalisation

Definition: spectral normalisation

The matrix (spectral) norm defines how
much a matrix can stretch a vector x:

‖A‖ = max
x 6=0

‖Ax‖
‖x‖

Spectral norm [6] normalises the weights
for each layer using the spectral norm
σ(W ) such that the Lipschitz constant for
every layer and the whole network is 1:

ŴSN = W /σ(W )

σ(ŴSN(W )) = 1

‖f‖Lip = 1

Pseudocode: 1-Lipschitz discriminator

class Discriminator(nn.Module):
def __init__(self, f=64):

super().__init__()
self.discriminate = nn.Sequential(

spectral_norm(Conv2d(1, f, 3, 1, 1)),
nn.LeakyReLU(0.1, inplace=True),
nn.MaxPool2d(kernel_size=(2,2)),
spectral_norm(Conv2d(f, f∗2, 3, 1, 1)),
nn.LeakyReLU(0.1, inplace=True),
nn.MaxPool2d(kernel_size=(2,2)),
spectral_norm(Conv2d(f∗2, f∗4, 3, 1, 1)),
nn.LeakyReLU(0.1, inplace=True),
nn.MaxPool2d(kernel_size=(2,2)),
spectral_norm(Conv2d(f∗4, f∗8, 3, 1, 1)),
nn.LeakyReLU(0.1, inplace=True),
nn.MaxPool2d(kernel_size=(2,2)),
spectral_norm(Conv2d(f∗8, 1, 3, 1, 1)),
nn.Sigmoid()

)
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Generative adversarial networks conditional GANs

Definition: conditional GAN

GANs can be conditioned with labels y if
available [7] by feeding the label information
into both the generator and the discriminator:

min
G

max
D

V (D,G) = Ex,y∼pdata(x)[logD(x|y)]

+ Ez∼pz(z)[log(1−D(G(z,y)|y))].

Link to Colab exampleW

z ∼ Ny
fake y

real

G(z,y)

D(x|y) 3
7
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https://colab.research.google.com/gist/cwkx/348cde3bf11a08c45a69b1873ebb6de3/conditional-gan.ipynb


Generative adversarial networks information maximizing GANs

Definition: information maximizing GANs

GANs can be trained to learn disentangled latent
representations in a completely unsupervised
manner. InfoGAN [8] popularised this by
maximizing mutual information between the
observation and a subset of the latents:

min
G,Q

max
D

VInfoGAN(D,G,Q) = V (D,G)− λLI(G,Q)

where LI(G,Q) is a variational lower bound of
the mutual information.

Link to Colab exampleW

z ∼ Nc

fake
Q(ĉ|x)

ĉ

real

G(z, c)

Cross Entropy

D(x)
3
7
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https://colab.research.google.com/gist/cwkx/7f5377ed8414a096180128b487846698/info-gan.ipynb


Generative adversarial networks adversarial autoencoders

Definition: adversarial autoencoders

Adversarial autoencoders [9] are generative
models that permit sampling.

In addition to the reconstruction loss, such
‖x− x̂‖2, they use adversarial training to match
the aggregated posterior of the hidden code
vector z of the autoencoder with an arbitrary
prior distribution, such as z ∼ N (0, I).

z ∼ N (0, I)

x ∼ pdata(x) x̂

zE(x) D(z)

3
7
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Popular applications skip connections (U-Net)

Definition: skip connections (U-Net)

Skip connections (U-Net) is a popular residual
approach used for paired image translation
tasks [10]. For example for images x and paired
masksm, where: L = Ex,m∼pdata

[
‖U(x)−m‖2

]
Link to Colab exampleW

Note: U-Net is not an adversarial method, but
the use of skip connections is popular in many
papers, so now is a good time to introduce it.

x m

E(x) D(z)
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https://colab.research.google.com/gist/cwkx/aece978bc38ba35c2267d91b793a1456/unet.ipynb


Popular applications unpaired translation (CycleGAN)

Definition: unpaired translation (CycleGAN)

CycleGAN [11] propose an adversarial architecture that enables unpaired
image translation. It has twin residual generators and two discriminators,
which translate between the domains, alongside a cycle consistency loss (an
L1 norm) which ensures the mapping can recover the original image.

x ŷ

cycle consistency loss

x̂

G(x) F (ŷ)

DY DX
3
7

3
7
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Popular applications super-resolution

Definition: super-resolution

Adversarial models are popular in
super-resolution approaches. The challenge is
that a single low-resolution (LR) input can map to
a distribution of high-resolution (HR) outputs.

PULSE [12] investigates this by projecting points
in the search of the latent space of StyleGAN (a
large conditional GAN) onto a hypersphere,
which ensures probable outputs in the
high-dimensional latent space.

Online exampleW
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https://colab.research.google.com/drive/1-cyGV0FoSrHcQSVq3gKOymGTMt0g63Xc


Popular applications adversarial anomaly detection

Definition: anomaly detection

Unsupervised anomaly detectors [13] learn a
normal distribution over (healthy) observations.
Then, when they observe something not
observed in training (unhealthy/dangerous), they
fail to reconstruct - detecting it as an anomaly.
Region-based anomaly detectors [14] learn a
distribution over inpainted (erased) regions.

x x̂

Lc
Ll
La

G(x)

D(x̂)
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Adversarial examples attacks

Definition: adversarial examples

These are small but intentionally
worst-case perturbations that fool the
model to output incorrect answers with
high confidence [15]. It is possible to
generate examples that also fool the
human visual system [16]. Cat or dog?

Example: adversarial examples

Example adding an imperceptibly small vector by
the sign of the elements of the gradient of the
cost function with respect to the input [15]:
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Adversarial examples defences

Definition: adversarial defence

There are several defence strategies that
introduce the adversarial examples into
training [15]. A popular approach uses U-Net to
denoise and reduce the amplification of the
adversarial perturbations [17].

Black-box adversarial defence is where an
adversary can only monitor the outputs of the
model. White-box methods are more difficult, as
an adversary has access to the model allowing
for specific attacks. White-box defence generally
overfits to the attack used during training.

Example: adversarial defences

Question: What is the behaviour at the
limit of the adversarial generative model
arms-race? Who wins at convergence?

16 / 20



References I

[1] Ian Goodfellow et al. “Generative adversarial nets”. In:
Advances in neural information processing systems. 2014, pp. 2672–2680.

[2] Shengyu Zhao, Zhijian Liu, Ji Lin, Jun-Yan Zhu, and Song Han. “Differentiable
augmentation for data-efficient gan training”. In: arXiv preprint arXiv:2006.10738
(2020).

[3] Luke Metz, Ben Poole, David Pfau, and Jascha Sohl-Dickstein. “Unrolled generative
adversarial networks”. In: arXiv preprint arXiv:1611.02163 (2016).

[4] Martin Arjovsky, Soumith Chintala, and Léon Bottou. “Wasserstein GAN”. In:
arXiv preprint arXiv:1701.07875 (2017).

[5] Ishaan Gulrajani, Faruk Ahmed, Martin Arjovsky, Vincent Dumoulin, and
Aaron C Courville. “Improved training of Wasserstein GANs”. In:
Advances in neural information processing systems. 2017, pp. 5767–5777.

[6] Takeru Miyato, Toshiki Kataoka, Masanori Koyama, and Yuichi Yoshida. “Spectral
normalization for generative adversarial networks”. In:
arXiv preprint arXiv:1802.05957 (2018).

17 / 20



References II

[7] Mehdi Mirza and Simon Osindero. “Conditional generative adversarial nets”. In:
arXiv preprint arXiv:1411.1784 (2014).

[8] Xi Chen, Yan Duan, Rein Houthooft, John Schulman, Ilya Sutskever, and
Pieter Abbeel. “InfoGAN: Interpretable representation learning by information
maximizing generative adversarial nets”. In:
Advances in neural information processing systems. 2016, pp. 2172–2180.

[9] Alireza Makhzani, Jonathon Shlens, Navdeep Jaitly, Ian Goodfellow, and
Brendan Frey. “Adversarial autoencoders”. In: arXiv preprint arXiv:1511.05644
(2015).

[10] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. “U-Net: Convolutional
networks for biomedical image segmentation”. In:
International Conf on Medical image comp and comp-assisted intervention.
Springer. 2015, pp. 234–241.

18 / 20



References III
[11] Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A Efros. “Unpaired

image-to-image translation using cycle-consistent adversarial networks”. In:
Proceedings of the IEEE international conference on computer vision. 2017,
pp. 2223–2232.

[12] Sachit Menon, Alexandru Damian, Shijia Hu, Nikhil Ravi, and Cynthia Rudin.
“PULSE: Self-supervised photo upsampling via latent space exploration of
generative models”. In:
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.
2020, pp. 2437–2445.

[13] Samet Akçay, Amir Atapour-Abarghouei, and Toby P Breckon. “Skip-ganomaly:
Skip connected and adversarially trained encoder-decoder anomaly detection”. In:
2019 International Joint Conference on Neural Networks (IJCNN). IEEE. 2019,
pp. 1–8.

[14] Bao Nguyen, Adam Feldman, Sarath Bethapudi, Andrew Jennings, and
Chris G Willcocks. “Unsupervised Region-based Anomaly Detection in Brain MRI
with Adversarial Image Inpainting”. In: arXiv preprint arXiv:2010.01942 (2020).

19 / 20



References IV

[15] Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. “Explaining and
harnessing adversarial examples”. In: arXiv preprint arXiv:1412.6572 (2014).

[16] Gamaleldin Elsayed, Shreya Shankar, Brian Cheung, Nicolas Papernot,
Alexey Kurakin, Ian Goodfellow, and Jascha Sohl-Dickstein. “Adversarial examples
that fool both computer vision and time-limited humans”. In:
Advances in Neural Information Processing Systems. 2018, pp. 3910–3920.

[17] Fangzhou Liao, Ming Liang, Yinpeng Dong, Tianyu Pang, Xiaolin Hu, and Jun Zhu.
“Defense against adversarial attacks using high-level representation guided
denoiser”. In:
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.
2018, pp. 1778–1787.

[18] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep learning.
Available onlineI, MIT press. 2016.

20 / 20

https://www.deeplearningbook.org/

	Generative adversarial networks
	definition
	properties
	mode collapse
	Lipschitz continuity
	spectral normalisation
	conditional GANs
	information maximizing GANs
	adversarial autoencoders

	Popular applications
	unpaired translation
	super resolution
	adversarial anomaly detection

	Adversarial examples
	attacks
	defences

	References

