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Manifold definition

Definition: manifold

A manifold is a topological space that locally
resembles Euclidean space
• topological manifold
• differentiable manifold
• Riemannian manifold

Definition: embedding

An embedding is a function φ that maps a
manifoldM to a new manifold N in an
injective way that preserves its structure:

φ :M→N

Example: manifolds

Manifold charts by KSmrq, distributed under CC. UV mesh example by Antony Ward. 3 / 14



Energy-based models definition

Definition: energy-based models

These are just any function that is happy
when you input something that looks like
data, and is not happy when you input
something that doesn’t look like data.

E(x) = 0 3

E(x̃) > 0 7

This generic definition fits a large majority of
machine learning models. For example
L(E(x),y) (a classifier)

Energy increases off manifold
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Energy-based models GANs as energy-based models

Definition: energy-based models

GANs are also energy models. The generator
G generates samples off the manifold, then
the descriminator D says these should be
one everywhere, whereas it says real
samples should be zero everywhere.

The generator also has to get good at
sampling points on the data manifold. So it
has to learn to generate points in the valley
regions.

Is this smooth? What does a 1-Lipschitz
discriminator do to the energy landscape?

GAN energy
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Energy-based models clustering as an energy-based model

Definition: clustering algorithm

A cluster is a connected-component of a
level-set of the unknown PDF over our data
observations.

Traditionally:

• We don’t know the PDF (the energy
landscape)

• We don’t necessarily know the level set
• although 0.5 is appropriate for BCE

• This can be expensive (deep learning)

Click to watch a video that visually explains
from the definitionv

Example: clustering by its definition
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https://youtu.be/AgPQ76RIi6A?t=493


Energy-based models softmax and softmin

Definition: softmax and softmin

Softmax and softmin functions rescale elements to be in the range
[0, 1] and such that they sum to 1. So they create a probability mass
function, e.g.: 

1.3
7.2
2.4
0.5
1.1

→ ezi∑K
j=1 e

zj
→


0.0027
0.9858
0.0081
0.0012
0.0022


Softmax functions are widely used (not just for EBMs) where a
distribution is needed, such as the last layer of a classifier.

7 / 14



Energy-based models exact likelihood

Challenges: energy-based models

EBMs are based on the observation that any
probability density function p(x) for x ∈ Rn
can be expressed as:

p(x) =
e−E(x)∫

x̃∈X e
−E(x̃)

,

where E(x) : Rn → R is the energy function.
However computation of the integral is
intractable [1] for most models.

Energy increases off manifold
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Contrastive-divergence approaches definition

Definition: contrastive-divergence

The gradient of the negative log-likelihood
loss L(θ) = Ex∼pd [− ln pθ(x)] has been shown
to demonstrate the following property:

∇θL = Ex+∼pd [∇θEθ(x
+)]−Ex−∼pθ [∇θEθ(x

−)]

where x− ∼ pθ is a sample from the energy
model found through a Monte Carlo Markov
Chain (MCMC) generating procedure.

Energy increases off manifold
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Boltzmann machines definition

Definition: Boltzmann machine

Boltzmann machines [2] are one of the
earliest neural networks for modeling binary
data. They can associate the probability of
the visible vectors v using finite summations:

pθ(v) =

∑
h e
−βEθ(v,h)∑

ṽ

∑
h e
−βEθ(ṽ,h)

They are typically trained via negative
log-likelihood through contrastive
divergence, where the weights are updated:∑

x∈X

∂ ln p(x)

∂wi,j
= Epd [vh

T ]− Epmodel [vh
T ]

Example: Boltzmann machine

They are an energy model which just have
visisble layers v1, v2, ..., vn (inputs) and
hidden layers h1, h2, ..., hn (no outputs):

v1 v2

h3

h2

h1

This example Boltzmann Machine has 2
visible units and 3 hidden units.
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Boltzmann machines restricted and deep Boltzmann machines

Definition: RBMs and DBMs

Restricted Boltzmann Machines (RBMs) and
Deep Boltzmann Machines (DBMs) are
Boltzmann machines with a more restricted
(bipartite) graph structure [3]. DBMs have
additional hidden layers.

That means that the visible units conditional
on the hidden units become independant,
which makes training these straightforward
in practice.

Link to ColabW Good YouTube talkv

Example: RBM

RBMs have a restricted architecture
architecture so that there are no
connections between hidden units:

v1 v2 v3 ... vn

h1 h2
... hn

DBMs are like the above, but with multiple
hidden layers between.
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https://colab.research.google.com/gist/cwkx/6b2d802e804e908a3ee3d58c1e0e73be/dbm.ipynb
https://www.youtube.com/watch?v=uju4RXEniA8


Score-based approaches Langevin dynamics

Definition: score-based GMs

Score-based generative modeling [4] also
eliminates the intractable second term
(sampling from the model). For the PDF p(x)
the score function is:

s(x) = ∇x log p(x)

When the score function is known, we can
use Langevin dynamics to sample the model.
Given a step size α > 0, a total number of
iterations T , and an initial sample x0 from
any prior distribution π(x), Langevin
dynamics iteratively updates:

xt ← xt−1 + α∇x log p(xt−1) +
√
2α zt

Energy increases off manifold
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Score-based approaches score-matching and denoising diffusion

Definition: score-matching

Score matching minimises the Fisher
divergence between pd and pθ:

L =
1

2
Epd(x)[ ‖sθ(x)− sdata(x)‖

2
2],

however, the score function is inaccurate in
regions without training data. Instead,
perturb the data with noise [5] giving
corrupted data samples q(x̃|x). In particular,
when q = L(x̃;x, σ2I), we get:

L =
1

2
Epd(x)Ex̃∼N (x,σ2I)

[∥∥∥∥sθ(x̃) + x̃− x

σ2

∥∥∥∥2
2

]
.

Example: CIFAR10 samples from [6]
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