
Sam Bond-Taylor
Durham University

Deep Learning
Lecture 8: Sequential Models

Lecture Overview

❶ Recurrent neural networks
● definition
● vanilla RNN implementation
● backpropagation through time
● vanishing/exploding gradients
❷ Long short term memory
● definition
● properties
❸ Transformers
● definition
● encoder-decoder
● end-to-end object detection
● unsupervised translation
● GPT-3
● linear transformers
● transformer equivalences

Recurrent neural networks [1] define a function
applied to nodes on a directed graph. Most often,
inputs are one-way directed graphs e.g. text, audio.

Sequential data is modelled using a cyclic
connection that allows information to be stored.
The same function f is applied to inputs at each
time step, updating a hidden state vector h which
acts as the network’s memory:

Recurrent Neural Networks definition

Definition: recurrent neural networks

Recurrent Neural Networks computational graphs

One-to-One One-to-Many Many-to-One Many-to-Many

A simple implementation is:

which is visually interpreted as a ‘cell’:

Link to Colab example

Recurrent Neural Networks vanilla RNN

Input h e l l

e l l o

Input
Layer

Hidden
Layer

Output
Layer

1.0
2.2
-3.0
4.1

0.5
0.3
-1.0
1.2

0.1
0.5
1.9
-1.1

0.2
-1.5
-0.1
2.2

0.3
-0.1
0.9

1.0
0.3
0.1

0.1
-0.5
-0.3

-0.3
0.9
0.7

1
0
0
0

0
1
0
0

0
0
1
0

0
0
1
0

OutputExample: vanilla RNN

https://colab.research.google.com/gist/samb-t/ac6dbd433c618eedcd0442f577697ea3/generative-rnn.ipynb

Recurrent Neural Networks backpropagation through time

loss

Backpropagation applied to an
unrolled RNN graph is called
backpropagation through time
(BPTT) [1]. Gradients accumulate
in W additively:

Long sequences use truncated
BPTT where sequences are split
into batches but hidden
connections remain.

Definition: BPTT

The gradient of h0 involves many factors of W (and tanh).
The product of T matrices whose spectral radius < 1 is a
matrix whose spectral radius converges to 0 at an
exponential rate in T [2].

Recurrent Neural Networks exploding/vanishing gradients

Why do gradients vanish/explode? Example: clip gradients

LSTMs [3] learn longer sequences than
vanilla RNNs using a gated residual
connection. Backpropagation from ct to ct-1
has no direct matrix multiplication by W.

Gates:
f: Forget gate, whether to erase cell
i: Input gate, whether to write to cell
g: Gate gate, how much to write to cell
o: Output gate, how much to reveal cell

Long Short Term Memory preventing vanishing gradients

Definition: long short term memory Example: LSTM cell

Main Strengths
● Allows for variable length sequences
● Efficient parameter usage
● Theoretically able to store arbitrarily old

information

Main Limitations
● Practically unable to store very long term

dependencies
● Limited by fixed size of hidden state
● Slow training and synthesis

LSTM Properties

Unreasonable Effectiveness of RNNs

Examples

Long Short Term Memory properties

https://karpathy.github.io/2015/05/21/rnn-effectiveness/

Neural attention [4] can ‘look’ anywhere in the
sequence and directly access tokens, removing
the hidden state bottleneck and reducing the
path length, preventing gradient issues.

Inputs are encoded as two vectors:
● Values V: content of the input (e.g. ‘big’)
● Keys K: descriptor of the input (e.g. adj)

Information is requested from the inputs by
calculating the similarity between Queries Q
and Keys then the relevant Values are selected:

Transformers attention is all you need

Definition: dot-product attention

Keys

Queries

Similarity
0.3 0.2 0.3 0.1

0.1

Values

Example: self-attention layer

Outputs

Neural translation [4, 5] is difficult because sequences are
different lengths. Standard RNN would have to compress
entire input sequence into a single descriptor vector.

Encoder: extracts meaning from inputs
Decoder: autoregressively predicts
next token. Attention allows it to look
directly at the corresponding word(s)

Link to Colab example

Transformers supervised translation

Definition: translation with transformers

Encoder

Decoder

https://colab.research.google.com/gist/samb-t/27cc3217799825975b65326d6e7b377b/transformer-translation.ipynb

Fast object detection is crucial
for many tasks including self
driving cars. Training
end-to-end is difficult due to
the discrete nature of objects.

DETR [6] uses a Transformer to
globally search and ‘query’ the
image for information allowing
more specific questions to be
asked. Attention matrices can
also be used to make
segmentation maps

Transformers end-to-end object detection

Definition: DETR Example: architecture and examples

Learn to translate with unpaired training data [7, 8].

A single encoder encodes all languages to a common
feature space so that similar words in different
languages map to similar locations. Only the
decoder knows which language it is.

Teach model to reconstruct masked and corrupted
inputs as well as back translate (top img): e.g.
encode python, reconstruct C++, encode it, then
reconstruct as python and apply loss.

Transformers unsupervised translation

Definition: unsupervised translation Example: feature space

GPT-3 [9] Training Details
● 175B parameters (96 layers with 96

heads each with 12,228 neurons)
● Batch size 3.2M. Input length of 2048
● Petabytes of data from the internet

Evaluation Tasks
● Few shot translation
● Reading comprehension (Q&A)
● Closed book question & answering
● Natural language inference
● Arithmetic
● News article writing

Transformers GPT-3

GPT-3 training and evaluation
Example: GPT-3 article

The good
Huge models are very good at a wide
variety of tasks using few-shot learning,
sometimes performing better than fine
tuned models.

The bad
Poor coherency over long sequences.
Struggles with common sense physics

The ugly
Bias - trained on internet so a reflection
of humanity. Online bots & fake news
indistinguishable from humans

Transformers GPT-3: the good, the bad, and the ugly

GPT-3 analysis

Top 10 Most Biased
Male Descriptive Words

Top 10 Most Biased
Female Descriptive Words

Large
Mostly
Lazy
Fantastic
Eccentric
Protect
Jolly
Stable
Personable
Survive

Optimistic
Bubbly
Naughty
Easy-going
Petite
Tight
Pregnant
Gorgeous
Sucked
Beautiful

Transformers efficient transformers

● Sparse Attention O(n sqrt(n)) [10]
● Linformer O(n) [11]
● Big Bird O(n sqrt(n)) [12]
● Reformer O(n log(n)) [13]
● Sinkhorn Transformer O(nN), N<<n [14]
● Routing Transformer O(n sqrt(n)) [15]
● Linear Transformer O(n) [16]
● Performers O(n) [17]
● And many more... See here for an

overview

Example: efficient transformers

https://arxiv.org/pdf/2009.06732.pdf

Can express dot-product attention for a general
similarity function sim as:

Instead, use where phi is
the feature representation for a kernel [16].
Then we can rewrite and simplify:

Now we can precompute the sums so it’s O(n).
Online example

Transformers linear transformers

Definition: linear transformer

Can only compute softmax in this way
by mapping to an infinite space. But
Performers [17] approximate softmax
by calculating sim(q,k) as

which can be monte carlo
approximated with m < d omegas.

Allows sequences 32 times longer on
current GPUs!

Example: Performers

https://linear-transformers.com/

The kernel-based interpretation [17] allows
Transformers to be reinterpreted as RNNs.

Make it autoregressive:

Define hidden states as cumsums from the
numerator (s) and denominator (z):

Transformers transformers are recurrent neural networks

Definition: transformer RNN

A Hopfield network [18] is a recurrent
neural network enabling memory storage.

They can store exponentially many binary
patterns with neurons. The weights matrix
for sequences xi is defined as

A pattern can be recovered
by minimising the energy
function (in one step):

Transformers transformers are Hopfield networks

Definition: Hopfield networks

Transformers attention is equivalent to
the continuous generalisation of Hopfield
networks where the Keys and Values
define the training patterns [19].

What can we take from this?
● Transformers can store

exponentially many patterns
● We can use multiple update steps to

converge to a single pattern
● Have a new temperature parameter

controlling the rate of convergence
● Can implement pooling, general

storage, permutation layers, etc.

Example: transformers equivalence

● LSTMs aren’t bad but residual
connections aren’t good enough to
prevent vanishing/exploding
gradients with very long sequences.

● Transformers allow direct access to
inputs, removing the hidden state
bottleneck and gradient problems.

● Dot-product attention is slow and
memory intensive but new methods
(e.g. Performers) are improving this.

● Huge Transformers (GPT-3) are very
good at few shot learning but ethical
questions need to be discussed.

Transformers take away points

Take Away Points

The Deep Learning module at Durham
University includes a new neural net called
Lilliput, the most advanced model yet. It
uses deep learning for its classification and
recommendation capabilities. It has been
used in more than 5,000 online articles to
discover topics related to medical
education, public health, and economics. If
you are interested in the technical details of
how this neural net works and what it can
do, you should check out the accompanying
blog post:
https://blog.durham.ac.uk/deep-learning
-lilliput-blog/.

Bonus: GPT-2 completion

[1] Rumelhart, David E., Geoffrey E. Hinton, and Ronald J. Williams. "Learning
representations by back-propagating errors." nature 323.6088 (1986): 533-536.

[2] Pascanu, Razvan, Tomas Mikolov, and Yoshua Bengio. "On the difficulty of training
recurrent neural networks." International conference on machine learning. 2013.

[3] Hochreiter, Sepp, and Jürgen Schmidhuber. "Long short-term memory." Neural
computation 9.8 (1997): 1735-1780.

[4] Vaswani, Ashish, et al. "Attention is all you need." Advances in neural information
processing systems. 2017.

[5] Bahdanau, Dzmitry, Kyunghyun Cho, and Yoshua Bengio. "Neural machine
translation by jointly learning to align and translate." arXiv preprint arXiv:1409.0473
(2014).

[6] Carion, Nicolas, et al. "End-to-End Object Detection with Transformers." arXiv
preprint arXiv:2005.12872 (2020).

References I

[7] Lachaux, Marie-Anne, et al. "Unsupervised Translation of Programming
Languages." arXiv preprint arXiv:2006.03511 (2020).

[8] Mikel Artetxe, Gorka Labaka, Eneko Agirre, and Kyunghyun Cho. “Unsupervised
Neural Machine Translation”. International Conference on Learning
Representations (ICLR), 2018.

[9] Brown, Tom B., et al. "Language models are few-shot learners." arXiv preprint
arXiv:2005.14165 (2020).

[10] Child, Rewon, et al. "Generating long sequences with sparse transformers." arXiv
preprint arXiv:1904.10509 (2019).

[11] Wang, Sinong, et al. "Linformer: Self-Attention with Linear Complexity." arXiv
preprint arXiv:2006.04768 (2020).

[12] Zaheer, Manzil, et al. "Big bird: Transformers for longer sequences." arXiv preprint
arXiv:2007.14062 (2020).

References II

[13] Kitaev, Nikita, Łukasz Kaiser, and Anselm Levskaya. "Reformer: The efficient
transformer." arXiv preprint arXiv:2001.04451 (2020).

[14] Tay, Yi, et al. "Sparse Sinkhorn Attention." arXiv preprint arXiv:2002.11296 (2020).
[15] Roy, Aurko, et al. "Efficient content-based sparse attention with routing

transformers." arXiv preprint arXiv:2003.05997 (2020).
[16] Katharopoulos, Angelos, et al. "Transformers are rnns: Fast autoregressive

transformers with linear attention." arXiv preprint arXiv:2006.16236 (2020).
[17] Choromanski, Krzysztof, et al. "Rethinking Attention with Performers." arXiv

preprint arXiv:2009.14794 (2020).
[18] Hopfield, John J. "Neural networks and physical systems with emergent collective

computational abilities." Proceedings of the national academy of sciences 79.8
(1982): 2554-2558.

[19] Ramsauer, Hubert, et al. "Hopfield networks is all you need." arXiv preprint
arXiv:2008.02217 (2020).

References II

