
Sam Bond-Taylor
Durham University

Deep Learning
Lecture 8: Sequential Models



Lecture Overview

❶  Recurrent neural networks
● definition
● vanilla RNN implementation
● backpropagation through time
● vanishing/exploding gradients
❷  Long short term memory
● definition
● properties
❸  Transformers
● definition
● encoder-decoder
● end-to-end object detection
● unsupervised translation
● GPT-3
● linear transformers
● transformer equivalences



Recurrent neural networks [1] define a function 
applied to nodes on a directed graph. Most often, 
inputs are one-way directed graphs e.g. text, audio.

Sequential data is modelled using a cyclic 
connection that allows information to be stored. 
The same function f is applied to inputs at each 
time step, updating a hidden state vector h which 
acts as the network’s memory:

Recurrent Neural Networks definition

Definition: recurrent neural networks



Recurrent Neural Networks computational graphs

One-to-One One-to-Many Many-to-One Many-to-Many



A simple implementation is:

which is visually interpreted as a ‘cell’:

Link to Colab example

Recurrent Neural Networks vanilla RNN
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OutputExample: vanilla RNN

https://colab.research.google.com/gist/samb-t/ac6dbd433c618eedcd0442f577697ea3/generative-rnn.ipynb


Recurrent Neural Networks backpropagation through time

loss

Backpropagation applied to an 
unrolled RNN graph is called 
backpropagation through time 
(BPTT) [1]. Gradients accumulate 
in W additively:

Long sequences use truncated 
BPTT where sequences are split 
into batches but hidden 
connections remain.

Definition: BPTT



The gradient of h0 involves many factors of W (and tanh). 
The product of T matrices whose spectral radius < 1 is a 
matrix whose spectral radius converges to 0 at an 
exponential rate in T [2].

Recurrent Neural Networks exploding/vanishing gradients

Why do gradients vanish/explode? Example: clip gradients



LSTMs [3] learn longer sequences than 
vanilla RNNs using a gated residual 
connection. Backpropagation from ct to ct-1 
has no direct matrix multiplication by W.

Gates:
f: Forget gate, whether to erase cell
i: Input gate, whether to write to cell
g: Gate gate, how much to write to cell
o: Output gate, how much to reveal cell

Long Short Term Memory preventing vanishing gradients

Definition: long short term memory Example: LSTM cell



Main Strengths
● Allows for variable length sequences
● Efficient parameter usage
● Theoretically able to store arbitrarily old 

information

Main Limitations
● Practically unable to store very long term 

dependencies
● Limited by fixed size of hidden state
● Slow training and synthesis

LSTM Properties

Unreasonable Effectiveness of RNNs 

Examples

Long Short Term Memory properties

https://karpathy.github.io/2015/05/21/rnn-effectiveness/


Neural attention [4] can ‘look’ anywhere in the 
sequence and directly access tokens, removing 
the hidden state bottleneck and reducing the 
path length, preventing gradient issues.

Inputs are encoded as two vectors:
● Values V: content of the input (e.g. ‘big’)
● Keys K: descriptor of the input (e.g. adj)

Information is requested from the inputs by 
calculating the similarity between Queries Q 
and Keys then the relevant Values are selected:

Transformers attention is all you need

Definition: dot-product attention
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Example: self-attention layer

Outputs



Neural translation [4, 5] is difficult because sequences are 
different lengths. Standard RNN would have to compress 
entire input sequence into a single descriptor vector.

Encoder: extracts meaning from inputs
Decoder: autoregressively predicts 
next token. Attention allows it to look 
directly at the corresponding word(s)

Link to Colab example

Transformers supervised translation 

Definition: translation with transformers

Encoder

Decoder

https://colab.research.google.com/gist/samb-t/27cc3217799825975b65326d6e7b377b/transformer-translation.ipynb


Fast object detection is crucial 
for many tasks including self 
driving cars. Training 
end-to-end is difficult due to 
the discrete nature of objects.

DETR [6] uses a Transformer to 
globally search and ‘query’ the 
image for information allowing 
more specific questions to be 
asked. Attention matrices can 
also be used to make 
segmentation maps

Transformers end-to-end object detection

Definition: DETR Example: architecture and examples



Learn to translate with unpaired training data [7, 8].

A single encoder encodes all languages to a common 
feature space so that similar words in different 
languages map to similar locations. Only the 
decoder knows which language it is.

Teach model to reconstruct masked and corrupted 
inputs as well as back translate (top img): e.g. 
encode python, reconstruct C++, encode it, then 
reconstruct as python and apply loss.

Transformers unsupervised translation

Definition: unsupervised translation Example: feature space



GPT-3 [9] Training Details
● 175B parameters (96 layers with 96 

heads each with 12,228 neurons)
● Batch size 3.2M. Input length of 2048
● Petabytes of data from the internet

Evaluation Tasks
● Few shot translation
● Reading comprehension (Q&A)
● Closed book question & answering
● Natural language inference
● Arithmetic
● News article writing

Transformers GPT-3

GPT-3 training and evaluation
Example: GPT-3 article



The good
Huge models are very good at a wide 
variety of tasks using few-shot learning, 
sometimes performing better than fine 
tuned models.

The bad
Poor coherency over long sequences. 
Struggles with common sense physics

The ugly
Bias - trained on internet so a reflection 
of humanity. Online bots & fake news 
indistinguishable from humans

Transformers GPT-3: the good, the bad, and the ugly

GPT-3 analysis

Top 10 Most Biased 
Male Descriptive Words

Top 10 Most Biased 
Female Descriptive Words

Large
Mostly
Lazy
Fantastic
Eccentric
Protect
Jolly
Stable
Personable
Survive

Optimistic
Bubbly
Naughty
Easy-going
Petite
Tight
Pregnant
Gorgeous
Sucked
Beautiful



Transformers efficient transformers

● Sparse Attention O(n sqrt(n)) [10]
● Linformer O(n) [11]
● Big Bird O(n sqrt(n)) [12]
● Reformer O(n log(n)) [13]
● Sinkhorn Transformer O(nN), N<<n [14]
● Routing Transformer O(n sqrt(n)) [15]
● Linear Transformer O(n) [16]
● Performers O(n) [17]
● And many more... See here for an 

overview 

Example: efficient transformers

https://arxiv.org/pdf/2009.06732.pdf


Can express dot-product attention for a general 
similarity function sim as:

Instead, use                                    where phi is 
the feature representation for a kernel [16]. 
Then we can rewrite and simplify:

Now we can precompute the sums so it’s O(n).
Online example

Transformers linear transformers

Definition: linear transformer

Can only compute softmax in this way 
by mapping to an infinite space. But 
Performers [17] approximate softmax 
by calculating sim(q,k) as

which can be monte carlo 
approximated with m < d omegas.

Allows sequences 32 times longer on 
current GPUs! 

Example: Performers

https://linear-transformers.com/


The kernel-based interpretation [17] allows 
Transformers to be reinterpreted as RNNs.

Make it autoregressive:

Define hidden states as cumsums from the 
numerator (s) and denominator (z): 

Transformers transformers are recurrent neural networks

Definition: transformer RNN



A Hopfield network [18] is a recurrent 
neural network enabling memory storage.

They can store exponentially many binary 
patterns with neurons. The weights matrix 
for sequences xi is defined as

A pattern can be recovered 
by minimising the energy 
function (in one step):
 

Transformers transformers are Hopfield networks

Definition: Hopfield networks

Transformers attention is equivalent to 
the continuous generalisation of Hopfield 
networks where the Keys and Values 
define the training patterns [19].

What can we take from this?
● Transformers can store 

exponentially many patterns
● We can use multiple update steps to 

converge to a single pattern
● Have a new temperature parameter 

controlling the rate of convergence
● Can implement pooling, general 

storage, permutation layers, etc.

Example: transformers equivalence



● LSTMs aren’t bad but residual 
connections aren’t good enough to 
prevent vanishing/exploding 
gradients with very long sequences.

● Transformers allow direct access to 
inputs, removing the hidden state 
bottleneck and gradient problems.

● Dot-product attention is slow and 
memory intensive but new methods 
(e.g. Performers) are improving this.

● Huge Transformers (GPT-3) are very 
good at few shot learning but ethical 
questions need to be discussed.

Transformers take away points

Take Away Points

The Deep Learning module at Durham 
University includes a new neural net called 
Lilliput, the most advanced model yet. It 
uses deep learning for its classification and 
recommendation capabilities. It has been 
used in more than 5,000 online articles to 
discover topics related to medical 
education, public health, and economics. If 
you are interested in the technical details of 
how this neural net works and what it can 
do, you should check out the accompanying 
blog post: 
https://blog.durham.ac.uk/deep-learning 
-lilliput-blog/.

Bonus: GPT-2 completion
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