
Reinforcement Learning
Lecture 2: Markov Decision Processes

Chris G. Willcocks
Durham University



Lecture Overview
Lecture covers Chapter 3 in Sutton & Barto [3] and uses David Silver’s examples [2]

1 Markov Chains
markov property
state transition matrix
definition and example

2 Markov Reward Process
definition and example
the return
state value function
the Bellman equation

3 Markov Decision Process
definition and example
policies
state and action value functions
the Bellman equation
optimal state and action value functions
the Bellman optimality equations
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Markov Chain markov property recap

With theMarkov property , we can throw away the history and just use the agents state:

Definition: Markov property

A state St isMarkov if and only if

P (St+1 | St) = P (St+1 | S1, S2, ..., St)

• For example, a chess board
• We don’t need to know how the game was played up to this point

• The state fully characterises the distribution over future events:

H1:t → St → Ht+1:∞
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Markov Chain state transition matrix

The probability of transitioning from state s to s′ for a Markov state is:

Pss′ = P (St+1 = s′ | St = s),

where the state transition probability for all states to all successor states can be ex-
pressed as a large matrix:

P =


to︷ ︸︸ ︷

P11 · · · P1n

...
Pn1 · · · Pnn

,
and each row sums to 1.

ClickW to try a demo [1]
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https://bit.ly/3hwYvpE


Markov Chain definition

AMarkov chain (also calledMarkov Process) is a set of states and a state-transitionmatrix

Definition: Markov chain

AMarkov chain is a tuple 〈S,P〉
• S is a finite set of states
• P is the state-transition matrix where Pss′ = P (St+1 = s′ | St = s)
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Markov Chain example

Example: Markov Chain

tv

class1 class2 class3 pass

pub

sleep
0.1

0.9

0.5
0.5 0.8

0.2
0.6

0.4

1.0

0.2

0.4

0.4

Example from [2]
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Markov Chain converting a MC to a state-transition matrix

Example: Markov Chain

tv

class1 class2 class3 pass

pub

sleep
0.1

0.9

0.5
0.5 0.8

0.2
0.6

0.4

1.0

0.2

0.4

0.4

State Transition Matrix

P =

c1 c2 c3 pass pub tv sleep



c1 0.5 0.5
c2 0.8 0.2
c3 0.6 0.4
pass 1.0
pub 0.2 0.4 0.4
tv 0.1 0.9

sleep 1.0

Example from [2]
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Markov Chain episodes

Example: Markov Chain

tv

class1 class2 class3 pass

pub

sleep
0.1

0.9

0.5
0.5 0.8

0.2
0.6

0.4

1.0

0.2

0.4

0.4

Episode

An episode is a varying-length sample of a
Markov chain:

S1, S2, ..., ST ,

for example starting from S1 = class1:

Episode samples
c1,c2,c3,pass,sleep
c1,tv,tv,tv,c1,c2,c3,pub,c2,sleep

Example from [2]
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Markov Reward Process definition

A Markov reward process is a Markov Chain with a reward function

Definition: Markov reward process

AMarkov reward process is a tuple 〈S,P,R, γ〉
• S is a finite set of states
• P is the state-transition matrix where Pss′ = P (St+1 = s′ | St = s)

• R is a reward function whereRs = E[Rt+1 | St = s]

• γ is the discount rate γ ∈ [0, 1]
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Markov Reward Process example

Example: Markov Reward Process

tv
R=-1

class1
R=-2

class2
R=-2

class3
R=-2

pass
R=+10

pub
R=+1

sleep
R=0

0.1

0.9

0.5

0.5 0.8

0.2

0.6

0.4

1.0

0.2

0.4

0.4

Example from [2]
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Markov Reward Process the return

The return Gt, in the simplest case, is the total future reward:

Gt = Rt+1 +Rt+2 +Rt+3 + ...+RT

In practice, we discount rewards into the future by the discount rate γ ∈ [0, 1].

Definition: The return

The return Gt is the discounted total future reward:

Gt = Rt+1 + γRt+2 + γ2Rt+3 + ... =

∞∑
k=0

γkRt+k+1
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Markov Reward Process state value function

Definition: The state value function

The state value function v(s) in an MRP is the
long-term value of a state:

v(s) = E[Gt | St = s],

for example calculated by sampling episodes...

Sample episodes
c1,c2,c3,pass,sleep
c1,tv,tv,tv,c1,c2,c3,pub,c2,sleep
c1,c2,sleep
...

Example: Puppy
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Markov Reward Process state value function

Example: MRP

tv
R=-1

class1
R=-2

class2
R=-2

class3
R=-2

pass
R=+10

pub
R=+1

sleep
R=0

0.1

0.9

0.5

0.5 0.8

0.2

0.6

0.4

1.0

0.2

0.4

0.4

Example: The state value function

This is an example v(s) with s = ‘class1’ and γ = 1
2
:

Gt = Rt+1 + γRt+2 + γ2Rt+3 + ...

= Rt+1 +
1

2
Rt+2 +

1

4
Rt+3 + ...

Episode samples Value function
c1,c2,c3,pass,sleep v1=−2− 1

2 ·2−
1
4 ·2+

1
8 ·10=−2.25

c1,tv,tv,c1,c2,c3,pub,c2,sleep v1=−2− 1
2 ·1−

1
4 ·1+

1
8 ·...=−3.125

c1,c2,sleep v1=−2− 1
2 ·2−

1
4 ·0+

1
8 =−3

... ... = −2.9
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Markov Reward Process value function example

Example: Markov Reward Process for γ = 0.5

tv
R=-1
-2v

class1
R=-2
-2.9v

class2
R=-2
-1.6v

class3
R=-2
1.12v

pass
R=+10
+10v

pub
R=+1
0.62v

sleep
R=0
0v

0.1

0.9

0.5

0.5 0.8

0.2

0.6

0.4

1.0

0.2

0.4

0.4

Example from [2]
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Markov Reward Process the Bellman equation

Through a series of identities, we can decompose the value function into the immediate
reward Rt+1 and the discounted value of the next state γv(St+1).

Definition: Bellman equation for MRP

The Bellman equation is:

v(s) = E[Gt | St = s]

= E[Rt+1 + γRt+2 + γ2Rt+3 + γ3Rt+4 + ... | St = s]

= E[Rt+1 + γ(Rt+2 + γRt+3 + γ2Rt+4 + ...) | St = s]

= E[Rt+1 + γGt+1 | St = s]

= E[Rt+1 + γv(St+1) | St = s],

which is equivalent to:

v(s) = Rs + γ
∑
s′∈S

Pss′v(s′)
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Markov Reward Process solving the Bellman equation

The Bellman equation can be expressed with matrices:v(1)...
v(n)

 =

R1

...
Rn

+ γ

 P11 · · · P1n

...
Pn1 · · · Pnn


v(1)...
v(n)

 ,
which is a linear equation that can be solved:

v = R+ γPv
(I− γP)v = R

v = (I− γP)−1R,

where I is the identity matrix. Unfortunately this matrix inversion is too slow, except for
small MDPs, so we use iterativemethods for largerMDP (MC evaluation and TD learning).
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Markov Reward Process example verifying the Bellman equation

Verification: MRP for γ = 0.5

v(s) = Rs + γ
∑
s′∈S

Pss′v(s′) = −2 + 0.5 ∗ (0.6 ∗ 10+ 0.4 ∗ 0.62) = 1.12

tv
R=-1
-2v

class1
R=-2
-2.9v

class2
R=-2
-1.6v

class3
R=-2
1.12v

pass
R=+10
+10v

pub
R=+1
0.62v

sleep
R=0
0v

0.1

0.9

0.5

0.5 0.8

0.2

0.6

0.4

1.0

0.2

0.4

0.4
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Markov Decision Process definition

A Markov decision process adds ‘actions’ so the transition probability matrix now de-
pends on which action the agent takes.

Definition: Markov decision process

AMarkov decision process is a tuple 〈S,A,P,R, γ〉
• S is a finite set of states
• A is a finite set of actions
• P is the state-transition matrix where Pass′ = P (St+1 = s′ | St = s,At = a)

• R is a reward function whereRas = E[Rt+1 | St = s,At = a]

• γ is the discount rate γ ∈ [0, 1]
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Markov Decision Process example

Example: Markov Decision Process

tv

class1 class2 class3

pub
R=+1

sleep

quit
R=0

relax
R=-1

relax
R=-1

study
R=-2

study
R=-2

sleep
R=0

study
R=+10

0.2

0.4

0.4

Example from [2]
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Markov Decision Process policies

A policy is a distribution over actions which determines how agents should behave in the
environment.

• A lazy agent will sample relaxing actions more than frequently than studying
• A high-performing agent will study at all classes, then study more at home!

Definition: Policy

A policy π is a distribution over actions given a state:

π(a|s) = P (At = a | St = s)
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Markov Decision Process state and action value functions

Definition: The state-value function

The state-value function vπ(s) is the same, but
its the return when following a given policy π:

vπ(s) = Eπ[Gt | St = s]

Definition: The action-value function

The action-value function is the long
term-value of a state when choosing an action
with policy π:

qπ(s, a) = Eπ[Gt | St = s,At = a]

Example: Arizona trail
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Markov Decision Process the Bellman equation

Similarly toMRPs, the state-value function can bedecomposed into the immediate reward
and the discounted value of the next state:

vπ(s) = Eπ[Gt | St = s]

= Eπ[Rt+1 + γvπ(St+1) | St = s]

=
∑
a∈A

π(a|s)qπ(s, a),

which is also the case for the action-value function, where:

qπ(s, a) = Eπ[Gt | St = s,At = a]

= Eπ[Rt+1 + γqπ(St+1, At+1) | St = s,At = a]

= Ras + γ
∑
s′∈S
Pass′vπ(s′).
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Markov Decision Process example verifying the Bellman equation

Verification: MDP with average policy

tv
-2.3v

class1
-1.3v

class2
2.7v

class3
7.4v

pub
R=+1

sleep
0v

quit
R=0

relax
R=-1

relax
R=-1

study
R=-2

study
R=-2

sleep
R=0

study
R=+10

0.2

0.4

0.4

Verification

Under the policy π where we do everything
{study,pub} with 50% probability and γ = 1:

vπ(s) =
∑
a∈A

π(a|s)qπ(s, a)

=
∑
a∈A

π(a|s)

(
Ras + γ

∑
s′∈S

Pass′vπ(s′)

)

=
1

2
∗ 10

+
1

2

(
1 + 0.2(−1.3v) + 0.4(2.7v) + 0.4(7.4v)

)
= 7.4v
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Markov Decision Process optimal state and action value functions

Definition: The optimal state-value function

The optimal state-value function v∗(s) is the
maximum value function over all policies:

v∗(s) = max
π

vπ(s)

Definition: The optimal action-value function

The optimal action-value function is the maximum
action value function over all policies:

q∗(s, a) = max
π

qπ(s, a)

Example: Mo Farah
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Markov Decision Process optimal state-value function example

Example: v∗(s) for γ = 1

tv
6

class1
6

class2
8

class3
10

pub
R=+1

sleep
0

quit
R=0

relax
R=-1

relax
R=-1

study
R=-2

study
R=-2

sleep
R=0

study
R=+10

0.2

0.4

0.4

Example from [2]
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Markov Decision Process optimal action-value and optimal policy

Example: q∗(s, a) for γ = 1

tv
6

class1
6

class2
8

class3
10

pub
R=+1
q∗=9.4

sleep
0

π∗(a|s) for γ = 1

quit
R=0
q∗=6

relax
R=-1
q∗=5

relax
R=-1
q∗=5

study
R=-2
q∗=6

study
R=-2
q∗=8

sleep
R=0
q∗=0

study
R=+10
q∗=10

0.2

0.4

0.4

Example from [2]
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Markov Decision Process the Bellman optimality equations for v∗ and q∗

The optimal value functions are similarly recursively related by the Bellman optimality
equations, where:

v∗(s) = max
π

vπ(s)

= max
a

q∗(s, a),

and the optimal action-value function:

q∗(s, a) = max
π

qπ(s, a)

= Ras + γ
∑
s′∈S
Pass′v∗(s′).
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Markov Decision Process verifying the Bellman optimality equation

Verification: MDP with average policy

tv
6v

class1
6v

class2
8v

class3
10v

pub
R=+1

sleep
0v

quit
R=0

relax
R=-1

relax
R=-1

study
R=-2

study
R=-2

sleep
R=0

study
R=+10

0.2

0.4

0.4

Verification

The optimal state-value for class3 following
γ = 1 requires q∗ for the pub action:

v∗(s) = max
a

q∗(s, a)

= max
a
Ras + γ

∑
s′∈S

Pass′v∗(s′)

= max
{
10 + 1 ∗ (0v),(

1 + 0.2(6v) + 0.4(8v) + 0.4(10v)
)}

= max{q∗ = 10, q∗ = 9.4}
= 10v
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