Reinforcement Learning

Lecture 4: Dynamic programming

Chris G. Willcocks

Durham University

Lecture overview

Lecture covers Chapter 4 in Sutton & Barto [1] and adaptations from David Silver [2]

@ Introduction

definition
examples
planning in an MDP

© Policy evaluation

definition
synchronous algorithm

€ Policy iteration

policy improvement
definition
modified policy iteration

@ Valueiteration

definition
summary and extensions

2/16

Introduction dynamic programming definition

Definition: Dynamic programming Planning: what's the optimal policy?

Dynamic programming is an optimisation
method for sequential problems. DP
algorithms are able to solve complex
‘planning’ problems.

Given a complete MDP, dynamic
programming can find an optimal policy.
This is achieved with two principles:

1. Breaking down the problem into
subproblems

2. Caching and reusing optimal solutions
to subproblems to find the overall
optimal solution

3/16

Introduction dynamic programming examples

Famous examples

e Dijkstra’s algorithm
e Backpropagation
e Doing basic math

...S0 it's really just recursion and common
sense!

4/16

Introduction pianning in an MDP

Dynamic programming for planning MDPs

In reinforcement learning, we want to use dynamic programming to solve
MDPs. So given an MDP (S, A, P, R, ~) and a policy =:

First, we want to find the value function v, for that policy:
e This is done by policy evaluation (the prediction problem)

Then, when we're able to evaluate the policy, we want find the best policy
v, (the control problem). This is done with two strategies:

1. Policy iteration
2. Value iteration

Follow along in Colab: (&'

5/16

https://colab.research.google.com/gist/cwkx/670c8d44a9a342355a4a883c498dbc9d/dynamic-programming.ipynb

Policy evaluation definition

Definition: Policy evaluation

Example: frozen lake environment

We want to evaluate a given policy 7.
We'll achieve this with the Bellman
expectation equation, v1 — v — ... = v,

6/16

PoIicy evaluation synchronous algorithm

Algorithm: policy evaluation

def policy_evaluation(env, policy, 7, theta):
—V = np.zeros(env.num_states)
while True:
delta = 0@
for s in range(env.num_states):
Vs = 0
for a, a_prob in enumerate(policy[s]):
for prob, s’, reward, done in env.P[s][al:
Vs += a_prob x prob x (reward + v % V[s’])
delta = max(delta, abs(V[s]l-Vs))

V[s] = Vs
if delta < theta:
break
return V

7/16

PoIicy evaluation synchronous algorithm

Recap: Bellman expectation equation

vr(s) = > m(als)gx (s, a) iteration 1, 7 = <—1—>
ac€A
=Y n(als) (R;‘ +v) 7’&%(8’))
acA s'eS

Algorithm: policy evaluation

(iteration=1, ~=1)
for s in range(env.num_states):
Vs = 0
for a, a_prob in enumerate(policy[s]):
for prob, s’, reward, done in env.P[s][a]:
Vs += a_prob x prob x (reward + v % V[s’])
—V[s] = Vs

8/16

PoIicy evaluation synchronous algorithm

Recap: Bellman expectation equation

vr(s) = > m(als)gx (s, a) iteration 2, 7 = <—1—>
ac€A
=Y n(als) (R;‘ +v) 7’&%(8’))
acA s'eS

Algorithm: policy evaluation

(iteration=2, ~=1)
for s in range(env.num_states):
Vs = 0
for a, a_prob in enumerate(policy[s]):
for prob, s’, reward, done in env.P[s][a]:
Vs += a_prob x prob x (reward + v % V[s’])
—V[s] = Vs

9/16

PoIicy evaluation synchronous algorithm

iteration 3, m = <—1—> iteration 4, = <—1—> iteration oo, 7 :<—$->

10/16

Policy iteration greedy policy improvement

random policy

4

4 [+

4>
+ |+
4

iteration oo, :<—$—>

improved policy

11716

Policy iteration definition

Definition: Policy iteration
Example: learning a better policy
Given a policy 7 (e.g. starting with a random :
policy), iteratively evaluate:

’Uﬂ—(S) = E[Rt+1, +’7Rt+2 54 ... | St = S]
7’ = greedy(vy)

This always converges to the optimal policy
7. That is, if the improvements stop:

Gx(3,7(5)) = max gx (5, @) = gx (5, 7(5)) = v (s)
then the Bellman equation has been

satisfied v, (s) = maxac4 ¢ (s, a) therefore
vr = vi(s) foralls € S

12/16

Policy iteration modified policy iteration

Algorithm: modified policy iteration

What if we don't do iterative policy evaluation to oo?
What if we just do a crude, e.g. k = 3 small amount of
iteration?

Does it still converge?

e Yes! It still converges to the optimal policy

e exceptin the case k = 1 which is equivilent to value
iteration

iteration 3, 7 = <—1—>

13/16

Value iteration definition

Bellman optimality equation | Algorithm: value iteration

If we recap the definition of the def value_iteration(env, v, theta):
optimal value function according Vhflnp_-rzeros(env -nS)
™ while True:
to the'Be.IIman optimality delta = 0
equation: for s in range(env.nS):
v_s = V[s]
v*(s)::rggxq*(s,a) g_s = np.zeros(env.nA)
for a in range(env.nA):

zlnax7zg4_q/j£:‘ngv*(5U for prob, s’, reward, done in env.P[s][a]:
@ oes g_slfal += prob * (reward + ~ % V[s’])
VEs] = max(q_s)
We can also iteratively apply the .fdzl'{a = maﬁ(de}ti, aES(V[S] — v_s))
update with the one-step it delta < theta: brea
policy = greedily_from(env, V, gamma)
look-ahead to learn v.(s) return policy, V

14/16

Take Away Points

Summary

In summary, dynamic programming;:

solves the planning problem, but not the full reinforcement learning
problem

requires a complete model of the environment

policy evaluation solves the prediction problem

there’s a spectrum between policy iteration and value iteration
these solve the control problem

Extensions:

Asynchronous DP (read section 4.5 of Sutton & Barto [1])
Play with the interactive demo by Andrej Karpathy (2

15/16

https://cs.stanford.edu/people/karpathy/reinforcejs/gridworld_dp.html

References |

[1] Richard S Sutton and Andrew G Barto.
Reinforcement learning: An introduction (second edition). Available online &. MIT
press, 2018.

[2] David Silver. Reinforcement Learning lectures.
https://www.davidsilver.uk/teaching/. 2015.

16/16

https://www.andrew.cmu.edu/course/10-703/textbook/BartoSutton.pdf
https://www.davidsilver.uk/teaching/

	Introduction
	definition
	examples
	planning in an MDP

	Policy evaluation
	definition
	synchronous algorithm

	Policy iteration
	policy improvement
	definition
	modified policy iteration

	Value iteration
	definition
	summary and extensions

	References

