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Lecture overview

Lecture covers Chapter 4 in Sutton & Barto [1] and adaptations from David Silver [2]
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policy improvement
definition
modified policy iteration

4 Value iteration
definition
summary and extensions
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Introduction dynamic programming definition

Definition: Dynamic programming

Dynamic programming is an optimisation
method for sequential problems. DP
algorithms are able to solve complex
‘planning’ problems.

Given a complete MDP, dynamic
programming can find an optimal policy.
This is achieved with two principles:

1. Breaking down the problem into
subproblems

2. Caching and reusing optimal solutions
to subproblems to find the overall
optimal solution

Planning: what’s the optimal policy?
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Introduction dynamic programming examples

Famous examples

• Dijkstra’s algorithm
• Backpropagation
• Doing basic math

...so it’s really just recursion and common
sense!
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Introduction planning in an MDP

Dynamic programming for planning MDPs

In reinforcement learning, we want to use dynamic programming to solve
MDPs. So given an MDP 〈S,A,P,R, γ〉 and a policy π:

First, we want to find the value function vπ for that policy:
• This is done by policy evaluation (the prediction problem)

Then, when we’re able to evaluate the policy, we want find the best policy
v∗ (the control problem). This is done with two strategies:
1. Policy iteration
2. Value iteration

Follow along in Colab: W
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https://colab.research.google.com/gist/cwkx/670c8d44a9a342355a4a883c498dbc9d/dynamic-programming.ipynb


Policy evaluation definition

Definition: Policy evaluation

We want to evaluate a given policy π.
We’ll achieve this with the Bellman
expectation equation, v1 → v2 → ...→ vπ

1 2 3

4 5 6 7

8 9 10 11

12 13 14

Example: frozen lake environment
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Policy evaluation synchronous algorithm

Algorithm: policy evaluation

def policy_evaluation(env, policy, γ, theta):
→V = np.zeros(env.num_states)

while True:
delta = 0
for s in range(env.num_states):

Vs = 0
for a, a_prob in enumerate(policy[s]):

for prob, s’, reward, done in env.P[s][a]:
Vs += a_prob ∗ prob ∗ (reward + γ ∗ V[s’])

delta = max(delta, abs(V[s]−Vs))
V[s] = Vs

if delta < theta:
break

return V
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Policy evaluation synchronous algorithm

Recap: Bellman expectation equation

vπ(s) =
∑
a∈A

π(a|s)qπ(s, a)

=
∑
a∈A

π(a|s)

(
Ras + γ

∑
s′∈S

Pass′vπ(s′)

)

Algorithm: policy evaluation

(iteration=1, γ=1)
for s in range(env.num_states):

Vs = 0
for a, a_prob in enumerate(policy[s]):

for prob, s’, reward, done in env.P[s][a]:
Vs += a_prob ∗ prob ∗ (reward + γ ∗ V[s’])

→V[s] = Vs

0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0

0.0 0.0 0.25

iteration 1, π =
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Policy evaluation synchronous algorithm

Recap: Bellman expectation equation

vπ(s) =
∑
a∈A

π(a|s)qπ(s, a)

=
∑
a∈A

π(a|s)

(
Ras + γ

∑
s′∈S

Pass′vπ(s′)

)

Algorithm: policy evaluation

(iteration=2, γ=1)
for s in range(env.num_states):

Vs = 0
for a, a_prob in enumerate(policy[s]):

for prob, s’, reward, done in env.P[s][a]:
Vs += a_prob ∗ prob ∗ (reward + γ ∗ V[s’])

→V[s] = Vs

0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0

0.0 0.0 0.06 0.0

0.0 0.06 0.34

iteration 2, π =
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Policy evaluation synchronous algorithm

.016

.031 .098

.109 .388

iteration 3, π =

.004 .001

.025

.008 .054 .117

.138 .411

iteration 4, π =

· · ·

.014 .012 .021 .010

.016 .041

.035 .088 .142

.176 .439

iteration∞, π =
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Policy iteration greedy policy improvement

random policy

→

.014 .012 .021 .010

.016 .041

.035 .088 .142

.176 .439

iteration∞, π =

max
a

improved policy
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Policy iteration definition

Definition: Policy iteration

Given a policy π (e.g. starting with a random
policy), iteratively evaluate:

vπ(s) = E[Rt+1,+γRt+2 + ... | St = s]

π′ = greedy(vπ)

This always converges to the optimal policy
π∗. That is, if the improvements stop:

qπ(s, π
′(s)) = max

a∈A
qπ(s, a) = qπ(s, π(s)) = vπ(s)

then the Bellman equation has been
satisfied vπ(s) = maxa∈A qπ(s, a) therefore
vπ = v∗(s) for all s ∈ S

Example: learning a better policy
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Policy iteration modified policy iteration

Algorithm: modified policy iteration

What if we don’t do iterative policy evaluation to∞?
What if we just do a crude, e.g. k = 3 small amount of
iteration?
Does it still converge?
• Yes! It still converges to the optimal policy
• except in the case k = 1 which is equivilent to value
iteration

.016

.031 .098

.109 .388

iteration 3, π =
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Value iteration definition

Bellman optimality equation

If we recap the definition of the
optimal value function according
to the Bellman optimality
equation:

v∗(s) = max
a

q∗(s, a)

= max
a
Ras + γ

∑
s′∈S

Pass′v∗(s′)

We can also iteratively apply the
update with the one-step
look-ahead to learn v∗(s)

Algorithm: value iteration

def value_iteration(env, γ, theta):
V = np.zeros(env.nS)
while True:

delta = 0
for s in range(env.nS):

v_s = V[s]
q_s = np.zeros(env.nA)
for a in range(env.nA):

for prob, s’, reward, done in env.P[s][a]:
q_s[a] += prob ∗ (reward + γ ∗ V[s’])

V[s] = max(q_s)
delta = max(delta, abs(V[s] − v_s))

if delta < theta: break
policy = greedily_from(env, V, gamma)
return policy, V
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Take Away Points

Summary

In summary, dynamic programming:

• solves the planning problem, but not the full reinforcement learning
problem

• requires a complete model of the environment
• policy evaluation solves the prediction problem
• there’s a spectrum between policy iteration and value iteration
• these solve the control problem

Extensions:
• Asynchronous DP (read section 4.5 of Sutton & Barto [1])
• Play with the interactive demo by Andrej KarpathyW
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https://cs.stanford.edu/people/karpathy/reinforcejs/gridworld_dp.html
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