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Lecture overview

Lecture covers chapter 5 in Sutton & Barto [1] and adaptations from David Silver [2]
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Introduction history of Monte Carlo methods

History: Monte Carlo methods

Invented by Stanislaw Ulman in the 1940s,
when trying to calculate the probability of a
successful Canfield solitaire. He randomly lay
the cards out 100 times, and simply counted
the number of successful plays.

Widely used today, for example:

• Path tracing in compute graphics
• Computational physics, chemistry, ...
• Grid-free PDE solvers [3]

Example: Monte Carlo path tracing
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Introduction definition

Definition: Monte Carlo method

Apply repeated random sampling to obtain
numerical results for difficult or otherwise
impossible problems

General approach:

1. Define a domain of possible inputs
2. Generate inputs randomly from a

probability distribution over the domain
3. Perform a deterministic computation on

the inputs
4. Aggregate (e.g. average) the results

Example: approximating π
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Monte Carlo reinforcement learning overview

Overview: MC reinforcement learning

Monte Carlo reinforcement learning learns
from episodes of experience:
1. Recap: empircal risk minimiation
2. It’smodel-free (requires no knowledge

of MDP transitions/rewards)
3. Learns from complete episodes (you

have to play a full game from start to
finish)

4. One simple idea: the value function =
the empirical mean return

MC RL samples complete episodes
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Monte Carlo reinforcement learning definition

Definition: MC reinforcement learning

Putting this together, we sample episodes from
experience under policy π

S1, A1, R2, S2, A2, ..., Sk ∼ π,

where we’re going to look at the total discounted
reward (the return) at each timestep onwards

Gt = Rt+1 + γRt+2 + ...+ γT−1RT ,

and our value function as the expected return

vπ(s) = Eπ[Gt | St = s].

With MC reinforcement learning, we use an empirical
mean instead of the expected return.

Example: episode
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Monte Carlo reinforcement learning incremental means

Definition: Incremental means

RL algorithms use incremental means, where µ1, µ2, ...
from a sequence is computed incrementally

µk =
1

k

k∑
j=1

xj

=
1

k

(
xk +

k−1∑
j=1

xj

)

=
1

k
(xk + (k − 1)µk−1)

= µk−1 +
1

k
(xk − µk−1)

Example: episode
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Monte Carlo methods prediction with incremental updates

Definition: MC prediction, incremental updates

Putting this together, we sample episodes from
experience under policy π

S1, A1, R2, S2, A2, ..., ST ∼ π,

and every time we visit a state, we’re going to increase
a visit counter, then we will use our running mean:

N(St)← N(St) + 1

V (St)← V (St) +
1

N(St)
(Gt − V (St))

It’s common to also just track a running mean and
forget about old episodes:

V (St)← V (St) + α(Gt − V (St))

Example: episode
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Monte Carlo methods policy iteration using action-value function

Problem: model-free learning. Solution: Q

Simply greedily improving the policy over V (s)
requires a model:

π′(s) = argmax
a∈A

Ras + Pass′V (s′),

whereas greedy policy improvement over Q(s, a) is
model-free:

π′(s) = argmax
a∈A

Q(s, a)

Follow along in Colab: W

Example: caching Q-values
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https://colab.research.google.com/gist/cwkx/a5129e8888562d1b4ecb0da611c58ce8/monte-carlo-methods.ipynb


Monte Carlo methods don’t just be greedy!

Algorithm: greedy MC that will get stuck

Q = np.zeros([n_states, n_actions])
n_visits = np.zeros([n_states, n_actions])

for episode in range(num_episodes):
s = env.reset(), done = False, result_list = []
while not done:

→ a = np.argmax(Q[s, :])
s’, reward, done, _ = env.step(a)
results_list.append((s, a))
result_sum += reward
s = s’

for (s, a) in results_list:
n_visits[s, a] += 1.0
α = 1.0 / n_visits[s, a]
Q[s, a] += α ∗ (result_sum − Q[s, a])

R=1

R=5

R=0
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Monte Carlo methods ε-greedy exploration

Definition: ε-greedy exploration

The simplest idea to avoid local minima is:
• choose a random action with probability ε
• choose the action greedily with probability 1− ε
• where allm actions are tied with non-zero
probability

This gives the updated policy:

π(a|s) =
{
ε/m+ 1− ε if a∗ = maxa∈AQ(s, a)
ε/m otherwise

Proof of convergence in Equation 5.2 of [1]

Problem: local minima

R=1

R=5

R=0
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Monte Carlo methods don’t just explore!

Asymptotically we can’t just explore...
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Monte Carlo methods greedy at the limit of infinite exploration

Definition: greedy at the limit with infinite exploration (GLIE)

Defines a schedule for exploration, such that these two conditions are met:
1. You continue to explore everything

lim
k→∞

Nk(s, a) =∞

2. The policy converges on a greedy policy:

lim
k→∞

πk(a|s) = 1(a = argmax
a′∈A

Qk(s, a
′))
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Monte Carlo methods greedy at the limit of infinite exploration

Algorithm: greedy at the limit of∞ exploration

..
for episode in range(num_episodes):

s = env.reset(), done = False, result_list = []
while not done:

→ ε = min(1.0, 10000.0/(episode+1))
if np.random.rand() > ε:

a = np.argmax(Q[s, :])
else:

a = env.action_space.sample()
s’, reward, done, _ = env.step(a)
results_list.append((s, a))
result_sum += reward
s = s’

for (s, a) in results_list:
n_visits[s, a] += 1.0
α = 1.0 / n_visits[s, a]
Q[s, a] += α ∗ (result_sum − Q[s, a])

R=1

R=5
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Take Away Points

Summary

In summary, Monte Carlo RL methods:

• are a solution to the reinforcement learning
problem

• require training with complete episodes
• are model-free
• can balance exploration vs exploitation
• eventually converge on the optimal
action-value function

15 / 16



References I

[1] Richard S Sutton and Andrew G Barto.
Reinforcement learning: An introduction (second edition). Available onlineI. MIT
press, 2018.

[2] David Silver. Reinforcement Learning lectures.
https://www.davidsilver.uk/teaching/. 2015.

[3] Rohan Sawhney and Keenan Crane. “Monte Carlo geometry processing: a grid-free
approach to PDE-based methods on volumetric domains”. In:
ACM Transactions on Graphics (TOG) 39.4 (2020), pp. 123–1.

16 / 16

https://www.andrew.cmu.edu/course/10-703/textbook/BartoSutton.pdf
https://www.davidsilver.uk/teaching/

	Introduction
	history of Monte Carlo methods
	definition

	Monte Carlo prediction
	overview
	definition
	incremental means
	prediction with incremental updates

	Monte Carlo control
	policy iteration using action-value function
	don't just be greedy!
	bold0mu mumu -greedy exploration
	greedy at the limit of infinite exploration

	References

