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Lecture overview

Lecture covers chapter 13 in Sutton & Barto [1] and examples from David Silver [2]
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Policy-based methods introduction

Definition: policy-based methods

Last week, we used a function approximator
to estimate the value function:

v̂(s,w) ≈ vπ(s),

and for control we estimated Q:

q̂(s, a,w) ≈ qπ(s, a).

This week we will estimate policies:

πθ(a|s) = P (a|s, θ)

Given a state, what’s the distribution over
actions?

Example: what’s the optimal policy?
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Policy-based methods characteristics

Policy-based RL characteristics

This approach has the following
advantages:
• Can be more efficient that calculating
the value function

• Better convergence guarantees
• Effective in high-dimensional or
continuous action spaces

• Can learn stochastic policies
And the following disadvantages:
• Converges on local rather than global
optimum

• Inefficient policy evaluation with high
variance

Example: continuous action spaces Û
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https://cdn.openai.com/research-covers/learning-dexterity/motion-types-v2@2x.mov


Policy-based methods deterministic vs stochastic policies

Example: deterministic vs stochastic policies

Deterministic policy for feature vectors describing thewalls around a state:

a=π(s, θ)

Stochastic policy:

a∼π(s, θ)

Example from [2].
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Policy gradients gradient estimators

Definition: gradient estimators

While we could optimise θ for non-differentiable functions using approaches
such as genetic algorithms or hill climbing, ideally we want to use a gradient
based estimator:

LPG(θ) = Êt
[
∇θ log πθ(at|st)Ât

]
where Ât is an estimate of the ‘advantage’ (difference between the return and
the state values, you could also replace Ât with q(s, a) instead for higher
variance). The expectation Êt is an empircal average over a finite batch of
samples [3]. Typically π follows a categorical distribution (softmax) or a
Gaussian for continuous action spaces.

Therefore we empirically follow the gradient that maximizes the likelihood of
the actions that give the most advantage.
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Policy gradients Monte Carlo REINFORCE

Definition: Monte Carlo REINFORCE

REINFORCE estimates the return in the
previous equation by using a Monte Carlo
estimate [4].
• Initialise some arbitrary parameters θ
• Iteratively sample episodes
• Calculate the complete return from
each step

• For each step again, update in the
gradient times the sample return

Algorithm: Monte Carlo REINFORCE

PyTorch example: W
# initialise θ with random values
π = PolicyNetwork(θ)

while(True):
# sample episode following π
S0, A0, R1, ..., ST−1, AT−1, RT ∼ π

for t in range(T − 1):

Gt ←
∑T
k=t+1 γ

k−t−1Rk
θ ← θ + αγtGt∇ lnπ(At|St, θ)
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https://github.com/pytorch/examples/blob/master/reinforcement_learning/reinforce.py


Actor-critic methods introduction

Definition: actor-critic methods

We combine policy gradients with
action-value function approximation, using
two models that may (optionally) share
parameters.

• We use a critic to estimate theQ values:
qw(s, a) ≈ qπθ (s, a)

• We use an actor to update the policy
parameters θ in the direction suggested
by the critic.

Example: Actor critic

Image from freecodecamp.org
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Actor-critic methods algorithm

Definition: actor-critic

Putting this together, actor-critic
methods use an approximate
policy gradient to adjust the actor
policy in the direction that
maximises the reward according to
the critic:

θ ← θ + α∇θ log πθ(s, a)qw(s, a)

Algorithm: Actor-Critic (PyTorchW)

# initialise s, θ,w randomly
# sample a ∼ πθ(a|s)
for t in range(T ):

sample rt and s′ from environment(s, a)
sample a′ ∼ πθ(a′|s′)
θ ← θ + αqw(s, a)∇θ lnπθ(a|s) # update actor
δt = rt + γqw(s′, a′)− qw(s, a) # TD error
w← w + αδt∇wqw(s, a) # update critic
a← a′, s← s′
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https://github.com/higgsfield/RL-Adventure-2/blob/master/1.actor-critic.ipynb


Extensions

Extensions

This has introduced the foundations, hopefully now you have a good
platform to read about the extensions to this.

1. Recommended further study (papers & code): W
2. Recommended further study (theory & STAR):W

Recommended extensions include:
• Advantage actor critic (A3C & A2C) [5]
• Experience replay & prioritised replay [6]
• Proximal policy optimisation [3]
• Rainbow (combining extensions) [7]
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https://github.com/higgsfield/RL-Adventure-2
https://lilianweng.github.io/lil-log/2018/04/08/policy-gradient-algorithms.html


Take Away Points

Summary

In summary:

• Policy gradients open up many new extensions
• Choose extensions to reduce variance to stabilise training
• Consider regularisation to encourage exploration
• Going off-policy gives better exploration
• Its possible for the actor and critic to share some lower layer
parameters, but be careful about it

• Experience replay can increase sample efficiency (where
simulation is expensive)
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