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Lecture overview

Lecture covers chapter 8 in Sutton & Barto [1] and examples from David Silver [2]
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Model-based RL taxonomy

Taxonomy of reinforcement learning algorithms
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This figure does not capture overlap, for example between policy optimsiation and Q-learning algorithms
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Model-based RL overview

RL Agents

observation action

In model-free RL:

— e No model
O Ay e Learn the value function ¢(s,a) and/or the
Ll policy 7(als) from experience
reward TRt In model-based RL:
e Learn the model from experience
e Plan the value function and/or the policy

from the model

environment‘

Figure based on [2, 1]
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Model-based RL the simulation cycle

e We learn a model to predict what the real
environment does (when you take an
action)

e We then use this simulated model to plan

li e This allows us to estimate the value function
and/or policy without directly interacting
with the real environment

e But we use this policy to take real actions
again

observation #2242, action
O, : 4 A, Model-based RL cycle:
e The agent experiences the real environment
Z , N\

environment
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Model-based RL characteristics

Model-based RL advantages: observation g)\g\

e The model can sometimes be a simpler and 0,
more useful representation of the
environment than you can otherwise access
by experience

e Can be learnt by supervised learning
e Can reason about model uncertainty

Model-based RL disadvantages:

e This is another component which
introduces some approximation error

e Value function and/or policy approximation - \*“"‘iﬁ’%
and now model approximation % . a

e We can only be as good as our model T
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Model-based RL definition

Definition: model

A model M = (P, Ry) is a parameterised n Example: environment model
representation of an MDP: (S, A, P, R). It

approximates state transitions P, ~ P and
rewards R, ~ R, learning a distribution over
the next states and rewards:

Sty1 ~ P(Sty1|St, Ar)
Riy1 = R(Re11|St, As),

which typically are conditionally independent
of each other:

P(St41, Re41|St, Az) =
P(St+1|St, Ae) P(Ri41|St, At)
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Model-based RL learning the model

Learning the model

We learn the model M, from experience
{S1, A1, Ra, ..., St} using supervised learning.

e We receive a stream of actual experiences
e This gives us a dataset:

S1,A1 — R2,SQ
SQ,AQ — R3,53

e s,a — ris aregression problem
e s,a — s'is a density estimation problem
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Integrated learning simulated and real experience

observation #2447, action

Experience can be simulated and real

Simulated experience sampled from M,,

S’ ~ Py (S']S, A)
R =TR,(R|S, A)

Real experience sampled from the true MDP

’
S~ Py

IR = . adebataly .
S/N = = &
R—,}"/% %\\

environment
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Model-based RL pyna-Q

Algorithm: Dyna-Q [3, 4]

initialise Q(s,a) and model M(s,a) for all s€ S and a € A(s)
while True:
s < current (nonterminal) state
a < e—greedy(s, Q)
r,s < env.step(s,a)
Q(s,a) « Q(s,a) + a(r + ymaxa Q(s',a) — Q(s,a))
M(s,a) < r,s’ (assuming deterministic environment)
for i in range(n):
s < random previously observed state
a < random action previously taken in s
r, s+ M(s,a)
Q(s,a) < Q(s,a) + a(r + ymaxs Q(s',a) — Q(s,a))
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Model-based RL Dyna-Q characteristics
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Model-based RL Monte carlo tree search (MCTS)

1 Repeat while time remains I
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Model-based RL simulated policy learning

“Model-Based Reinforcement Learning for Atari” [5]
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Take Away Points

In summary, model-based methods:

e are easy to train with supervised learning

e allow for planning ahead

e can be very data efficient

e can be used to imagine situations without experiencing them

e but the value and policy learnt can only be as good as the model
e they can be combined with model-free methods
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