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Modelling data in five equations (modelling approaches)

Today

• Five main modelling
approaches p(x) ≈ ?

• Their concepts and
characteristics

• Future research
directions
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Recent review

Bond-Taylor, Willcocks et al., "Deep Generative Modelling:
A Comparative Review of VAEs, GANs, Normalizing Flows,

Energy-Based and Autoregressive Models" in IEEE
Transactions on Pattern Analysis and Machine Intelligence

(TPAMI) [1]
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Generative models learning the data distribution

Learning the data distribution

So what is it we want exactly?

• P (Y |X) discriminative model (classification)
• P (X|Y ) conditional generative model
• P (X,Y ) generative model

We want to learn the probability density function
of our data (natures distribution) YX

P

The data distribution P (X,Y )
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Generative models definition

Definition: Generativemodels learn a joint distribution over the entire dataset with some
target variable(s). They are mostly used for sampling applications or density estimation:

Sampling the model

A generative model learns to fit a
model distribution over observations
so we can sample novel data from the
model distribution, xnew ∼ pmodel(x)

Density estimation

Density estimation is estimating the
probability of observations. Given a
datapoint x, what is the probability
assigned by the model, pmodel(x)?

sampler

density
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Introduction probability examples

Examples

Linguists
• What is the probability of a sentence? P (sentence)

• P (‘the dog chased after the ball’)
• P (‘printers eat avocados when sad’) ≈ 0

Meteorologists
• What is the probability of whether it will rain? P (rain)

Artists
• What is the probability of this image being a face? P (face)

Musicians
• What is the probability this sounds like Beethoven? P (Beethoven)
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Density estimation maximum likelihood estimation

Definition: maximum likelihood estimation

Maximum likelihood estimation (MLE) is a
method for estimating the parameters of a
probability distribution by maximizing a
likelihood function, so that under the model the
observed data is most probable

θ∗ = argmax
θ

pmodel(X; θ)

= argmax
θ

n∏
i=1

pmodel(x
i; θ)

≈ argmax
θ

Ex∼pdata [ log pmodel(x; θ) ],

where X = {x1,x2, ...,xn} are from pdata(x)
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Density estimation cumulative distribution sampling

Example: cumulative distribution sampling

Given the CDF FX(x), the antiderivative of
fX(x) = pmodel(x) , e.g. where F ′(x) = pmodel(x)

FX(x) =

∫ x

−∞
fX(u) du

we can sample new data by transforming
random values z from the uniform distribution
z ∼ U via the inverse of the CDF F−1

X (z).

z ∼ U

xnew ∼ pmodel(x)
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Autoregressive generative models

Definition: autoregressive (AR)
generative models

AR models maximise the likelihood of the
training data (excellent mode coverage):

pθ(x) = pθ(x1, ..., xN ) =
N∏
i=1

pθ(xi|x1, ..., xi−1)

This is slow due to the sequential nature
defined by the chain rule of probability.

= ...h ht−1 ht ht+1 ht+n

the cat sat mat

dog sat on and
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Generative networks definition

Definition: generative networks

The goal of generative networks is to take some
simple distribution, like a normal distribution or
a uniform distribution, and apply a non-linear
transformation (e.g. a deep neural network) to
obtain samples from pdata(x)

In 1D, we can say G = F−1
data(x) and sample

z ∼ U , and similarly in ND — but assuming the
determinant of the Jacobian and the inverse of G
are computable, which is a large restriction.
Ideally we want z in low dimensions

G(z)

latent space

z ∼ p(z)
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Generative adversarial networks definition

Definition: generative adversarial networks

A generative adversarial network (GAN) is a
non-coorporative zero-sum game where two
networks compete against each other [2].

One network G(z) generates new samples,
whereas D estimates the probability the sample
was from the training data rather than G:

min
G

max
D

V (D,G) = Ex∼pdata(x)[logD(x)]

+ Ez∼pz(z)[log(1−D(G(z)))].

z ∼ N
fake

real

G(z)

D(x)
3
7
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Generative adversarial networks properties

GAN properties

GANs benefit from differentiable data
augmentation [3] for both reals and fakes, but
are otherwise notoriously difficult to train:

• Non-convergence
• Diminishing gradient
• Difficult to balance
• Mode collapse (next slide)

Link to Colab exampleW

z ∼ N
fake

real

G(z)

D(x)
3
7
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https://colab.research.google.com/gist/cwkx/74e33bc96f94f381bd15032d57e43786/simple-gan.ipynb


Generative adversarial networks mode collapse

Definition: mode collapse

This is where the generator rotates through a small subset of outputs, and the
discriminator is unable to get out of the trap. Mode collapse is arguably the
main limitation of GANs.

Figure from [4]. The final column shows the target data distribution and the bottom row shows a GAN rotating through the modes.
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Generative adversarial networks conditional GANs

Definition: conditional GAN

GANs can be conditioned with labels y if
available [5] by feeding the label information
into both the generator and the discriminator:

min
G

max
D

V (D,G) = Ex,y∼pdata(x)[logD(x|y)]

+ Ez∼pz(z)[log(1−D(G(z,y)|y))].

Link to Colab exampleW

z ∼ Ny
fake y

real

G(z,y)

D(x|y) 3
7
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https://colab.research.google.com/gist/cwkx/348cde3bf11a08c45a69b1873ebb6de3/conditional-gan.ipynb


Generative adversarial networks information maximizing GANs

Definition: information maximizing GANs

GANs can be trained to learn disentangled latent
representations in a completely unsupervised
manner. InfoGAN [6] popularised this by
maximizing mutual information between the
observation and a subset of the latents:

min
G,Q

max
D

VInfoGAN(D,G,Q) = V (D,G)− λLI(G,Q)

where LI(G,Q) is a variational lower bound of
the mutual information.

Link to Colab exampleW

z ∼ Nc

fake
Q(ĉ|x)

ĉ

real

G(z, c)

Cross Entropy

D(x)
3
7
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https://colab.research.google.com/gist/cwkx/7f5377ed8414a096180128b487846698/info-gan.ipynb


Generative adversarial networks adversarial autoencoders

Definition: adversarial autoencoders

Adversarial autoencoders [7] are generative
models that permit sampling.

In addition to the reconstruction loss, such
‖x− x̂‖2, they use adversarial training to match
the aggregated posterior of the hidden code
vector z of the autoencoder with an arbitrary
prior distribution, such as z ∼ N (0, I).

z ∼ N (0, I)

x ∼ pdata(x) x̂

zE(x) D(z)

3
7
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Popular applications unpaired translation (CycleGAN)

Definition: unpaired translation (CycleGAN)

CycleGAN [8] propose an adversarial architecture that enables unpaired image
translation. It has twin residual generators and two discriminators, which
translate between the domains, alongside a cycle consistency loss (an L1
norm) which ensures the mapping can recover the original image.

x ŷ

cycle consistency loss

x̂

G(x) F (ŷ)

DY DX
3
7

3
7
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Popular applications adversarial anomaly detection

Definition: anomaly detection

Unsupervised anomaly detectors [9] learn a
normal distribution over (healthy) observations.
Then, when they observe something not
observed in training (unhealthy/dangerous), they
fail to reconstruct - detecting it as an anomaly.
Region-based anomaly detectors [10] learn a
distribution over inpainted (erased) regions.

x x̂

Lc
Ll
La

G(x)

D(x̂)
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Vector quantization

Vector quanitization

Imposing a discrete prior on the latents can
be achieved with either variational or
adversarial (non-blurry) approaches.

The Gumbel-Softmax distribution
interpolates between discrete
one-hot-encoded categorical distributions
and continuous categorical densities.

Above: vector quantisation. Below:
shift mode collapse to perceptually
unimportant parts of the signal.
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Energy-based models definition

Definition: energy-based models

These are just any function that is happy
when you input something that looks like
data, and is not happy when you input
something that doesn’t look like data.

E(x) = 0 3

E(x̃) > 0 7

This generic definition fits a large majority of
machine learning models. For example
L(E(x),y) (a classifier)

Energy increases off manifold

0
0.5

1
1.5

2 0

1

2

0

1

2

x

y

en
er
gy

19 / 48



Energy-based models GANs as energy-based models

Definition: energy-based models

GANs are also energy models. The generator
G generates samples off the manifold, then
the descriminator D says these should be
one everywhere, whereas it says real
samples should be zero everywhere.

The generator also has to get good at
sampling points on the data manifold. So it
has to learn to generate points in the valley
regions.

Is this smooth? What does a 1-Lipschitz
discriminator do to the energy landscape?

GAN energy
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Energy-based models clustering as an energy-based model

Definition: clustering algorithm

A cluster is a connected-component of a
level-set of the unknown PDF over our data
observations.

Traditionally:

• We don’t know the PDF (the energy
landscape)

• We don’t necessarily know the level set
• although 0.5 is appropriate for BCE

• This can be expensive (deep learning)

Click to watch a video that visually explains
from the definitionv

Example: clustering by its definition
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https://youtu.be/AgPQ76RIi6A?t=493


Energy-based models softmax and softmin

Definition: softmax and softmin

Softmax and softmin functions rescale elements to be in the range
[0, 1] and such that they sum to 1. So they create a probability mass
function, e.g.: 

1.3
7.2
2.4
0.5
1.1

→ ezi∑K
j=1 e

zj
→


0.0027
0.9858
0.0081
0.0012
0.0022


Softmax functions are widely used (not just for EBMs) where a
distribution is needed, such as the last layer of a classifier.
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Energy-based models exact likelihood

Challenges: energy-based models

EBMs are based on the observation that any
probability density function p(x) for x ∈ Rn
can be expressed as:

p(x) =
e−E(x)∫

x̃∈X e
−E(x̃)

,

where E(x) : Rn → R is the energy function.
However computation of the integral is
intractable [11] for most models.

Energy increases off manifold
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Score-based approaches Langevin dynamics

Definition: score-based GMs

Score-based generative modeling [12] also
eliminates the intractable second term
(sampling from the model). For the PDF p(x)
the score function is:

s(x) = ∇x log p(x)

When the score function is known, we can
use Langevin dynamics to sample the model.
Given a step size α > 0, a total number of
iterations T , and an initial sample x0 from
any prior distribution π(x), Langevin
dynamics iteratively updates:

xt ← xt−1 + α∇x log p(xt−1) +
√

2α zt

Energy increases off manifold
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Score-based approaches score-matching and denoising diffusion

Diffusion probablistic modeling

Diffusion Probablistic Modeling approaches
(such as DDPMs [13]) typically have a U-Net
shaped architecture:

Data is gradually diffused in a forward
process for T timesteps until it matches the
target distribution.

The reverse process gradually removes noise
starting at p(xT ) = N (xT ;0, I) for T
timesteps.

‘Score-Based Generative Modeling through
Stochastic Differential Equations’ [14] has
author code and PyTorch tutorials in the link.

Example: CIFAR10 samples from [13]
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Diffusion-based anomaly detection

Diffusion-based anomaly detection

Like GANs, diffusion-based models work
well for anomalies (great for small datasets).

• Do a partial diffusion
• Train only on healthy/normal data
• Abnormal denoising will only know
how to make the data look normal

• Any error = surprise = anomalies

Our recent paper, AnoDDPM [15] (CVPR
NTIRE), uses simplex noise to capture
multi-scale anomalies. See also
UNIT-DDPM [16] (unpaired translation).

Link to project pageW
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https://julianwyatt.co.uk/anoddpm


Flow models definition

Definition: flow models

Flow models restrict our function to be a chain of invertible
functions, called a flow, therefore the whole function is invertible.

inverse
f−1(x) p(z)

flow
f(z)p(z)
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Flow models the determinant

Recap: the determinant

The determinant of an n× n square matrixM is a scalar value that determines
the factor of how much a given region of space increases or decreases by the
linear transformation ofM :

detM = det


a11 a12 . . . a1n

a21 a22 . . . a2n

...
...

...
an1 an2 . . . ann

 =
∑

j1j2...jn

(−1)τ(j1j2...jn)a1j1a2j2 . . . anjn

Watch a 3Blue1Brown’s video hereW

PyTorch: torch.det(M), for example: torch.det(torch.eye(3,3)) returns 1.0
and torch.det(torch.tensor([[3.,2.],[0.,2.]])) returns 6.0
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https://www.youtube.com/watch?v=Ip3X9LOh2dk&feature=youtu.be&t=148


Flow models the change of variables theorem

Definition: the change of variables theorem

Given pZ(z) where x = f(z) and z = f−1(x) we ask what is pX(x)?

pX(x) = pZ(f−1(x))

∣∣∣∣det

(
∂f−1(x)

∂x

)∣∣∣∣

requires normalisation
f(z)

pZ(z)
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Normalising flows definition

Definition: normalising flows

Normalising flows f : Rn → Rn transform and renormalise a sample
z ∼ pθ(z) through a chain of bijective transformations f , where:

x = fθ(z) = fK ◦ · · · ◦ f2 ◦ f1(z)

log pθ(x) = log pθ(z) +

K∑
i=1

log

∣∣∣∣ det

(
∂f−1

i

∂zi

) ∣∣∣∣

inverse
f−1(x) p(z)

flow
f(z)p(z)
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Normalising flows triangular Jacobians

Easy to compute determinants

We have a sequence of high-dimensional
bijective functions, where we need to
compute the Jacobian determinants.

Computing the determinants can be
expensive, so most of the literature focuses
on restricting the function f−1 to those with
easy-to-compute Jacobian determinants.

This is done by ensuring the Jacobian matrix
of the functions is triangular.

Definition: triangular Jacobian

If the Jacobian is lower triangular:

J =



a1,1 0
a2,1 a2,2

a3,1 a3,2

. . .
...

...
. . . . . .

an,1 an,2 . . . an,n−1 an,n


then the determinant is simply the product
of its diagonals.
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Normalising flows normalising flow layers

Description Function Log-Determinant

Additive Coupling [17] y(1:d) = x(1:d)

y(d+1:D) = x(d+1:D) + f(x(1:d))
0

Planar [18] y = x + uh(wT z + b)
With w ∈ RD , u ∈ RD , b ∈ R

ln |1 + uTh′(wT z + b)w|

Affine Coupling [19] y(1:d) = x(1:d)

y(d+1:D) = x(d+1:D)�fσ(x(1:d))+fµ(x(1:d))

∑d
1 ln |fσ(x(i))|

Batch Normalization
[19]

y = x−µ̃√
σ̃2+ε

− 1
2

∑
i ln
(
σ̃2
i + ε

)
1x1 Convolution [20] With h×w × c tensor x & c× c tensorW

∀i, j : yi,j = Wxi,j

h · w · ln | detW|

i-ResNet [21] y = x + f(x)
where ‖f‖L < 1

tr(ln(I +∇xf)) =∑∞
k=1(−1)k+1 tr((∇xf)k)

k

Emerging Convolutions
[22]

k = w1 �m1, g = w2 �m2

y = k ?l (g ?l x)

∑
c ln |kc,c,my,mxgc,c,my,mx |
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Generative networks variational autoencoders

Definition: variational autoencoders

Variational autoencoders are generative models,
as they impose a prior over the latent space p(z),
typically z ∼ N (0, I) which can be sampled from.

z ∼ E(x) = q(z|x), x̂ ∼ D(z) = p(x|z)

The VAE loss is the negated expected
log-likelihood (the reconstruction error) and the
prior regularization term:

LVAE = −Eq(z|x)

[
log

p(x|z)p(z)

q(z|x)

]
= Lpixel

recon +Lprior

where
Lpixel

recon = −Eq(z|x)[log p(x|z)]

Lprior = DKL(q(z|x) || p(z))

z ∼ N (0, I)

x ∼ pdata(x) x̂q(z|x)
µ

σ ×
+ z

ε

E(x)

z=µ+σ�ε

p(x|z)
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Generative networks variational autoencoders: ELBO

Definition: ELBO

VAEs therefore have three components:

1. the decoder pθ(x|z)

2. the approximate posterior (encoder) qφ(z|x)

3. the prior distribution pθ(z)

They are trained with the reparameterisation trick to
maximise the evidence lower bound (ELBO):

log pθ(x) ≥ Ez∼qφ(z|x) log pθ(x|z)−DKL [qφ(z|x)||pθ(z)]

Read [23] for detail on the theory (where the figure is
from) and [24] for a state-of-the-art method that
stacks VAEs hierarchically (Very Deep VAEs).
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Implicit networks definition

Definition: implicit representations

Consider data Φ: Rm → Rn, like a single
image, as a function of coordinates c ∈ Rm.
The aim is to learn a neural approximation of
Φ that satisfies an implicit equation:

R(c,Φ,∇Φ,∇2
Φ, . . . ) = 0, Φ: c 7→ Φ(c).

Equations with this structure arise in a
myriad of fields, namely 3D modelling,
image, video, and audio representation.

Example: implicit network

−0.2
−0.1

x(c) ≈ Φx(c)
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Implicit representation networks SIREN

Definition: SIREN

SInusoidal REpresentation Networks (SIREN)
are a simple implicit representation network
with fully connected layers, but use sin (with
clever initialisation to scale it appropriately)
as their choice of non-linearity [25].

sin is periodic, so it allows to capture
patterns over all of the coordinate space (it’s
translation invariant, like convolutions).

Example: SIREN (implicit network)

−0.2
−0.1

x(c) ≈ Φx(c)

Link to project pageW
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https://vsitzmann.github.io/siren/


Implicit representation networks NeRF

Definition: NeRF

Neural Radiance Fields (NeRF) are
similar to SIRENs, but instead of
representing an image, they
represent a single 3D scene [26].

They map from pixel positions
(x, y, z) and a viewing direction
(θ, φ) to a colour and density value
σ integrated via a ray on Fθ.

Link to project pageW
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https://www.matthewtancik.com/nerf


Implicit networks gradient origin networks

Definition: gradient origin networks

Gradient origin networks (GON) treat the
derivative of the decoder as an encoder [27].
This allows us to compute the latents:

z = −∇z0L(x, F (z0))

which are then jointly optimised, giving the
GON objective:

Gx = L(x, F (−∇z0L(x, F (z0)))).

Link to project pageW

Example: implicit GON

−0.2
−0.1 F (c, z)

z0 = 0
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https://cwkx.github.io/data/GON/


Hybrids combinations of the five modelling equations

Summary

p(x) =
N∏
i=1

p(xi|x1, ..., xi−1)

p(x) ≈ e−E(x)∫
x̃∈X e

−E(x̃)
e.g.∇x log p(x)

log p(x) ≥ Lpixel
recon −DKL [qφ(z|x)||p(z)]

log p(x) 6= logD(x) (in GAN)

p(x) = pZ(f−1(x))

∣∣∣∣det

(
∂f−1(x)

∂x

)∣∣∣∣
Our hybrids “Unleashing transform-
ers” [28] W (ECCV22) or “Megapixel
image generation” (new) [29].

Expressivity
Capacity

Steps
Time
Depth

Fit
Coverage
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https://github.com/samb-t/unleashing-transformers...


Our hybrid [29] 2 seconds generation, 2 days training, single GTX 1080Ti
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Take Away Points

Contributions

• State-of-the-art = hybrids
• Some applications only need partial diffusion (AnoDDPM, UNIT-DDPM)
• Start of non-hybrid generative implicit networks (GONs)—we need new
interpolated modelling theory please (more like [30])

Tips, tricks and the future

• Eventually move discriminative modelling tasks to generative modelling
• Measuring progress sucks (not just quality/performance)
• For vision state-of-the-art:

• Intentionally mode collapse parts of signal you don’t care about
• Model with good coverage + quality (AR,EBM) the remaining signal
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