
Deep generative modelling
Concepts and characteristics

Chris G. Willcocks
Durham University

Modelling data in five equations (modelling approaches)

Today

• Five main modelling
approaches p(x) ≈ ?

• Their concepts and
characteristics

• Future research
directions

Expressivity
Capacity

Steps
Time
Depth

Fit
Coverage

Recent review

Bond-Taylor, Willcocks et al., "Deep Generative Modelling:
A Comparative Review of VAEs, GANs, Normalizing Flows,

Energy-Based and Autoregressive Models" in IEEE
Transactions on Pattern Analysis and Machine Intelligence

(TPAMI) [1]

2 / 48

Generative models learning the data distribution

Learning the data distribution

So what is it we want exactly?

• P (Y |X) discriminative model (classification)
• P (X|Y) conditional generative model
• P (X,Y) generative model

We want to learn the probability density function
of our data (natures distribution) YX

P

The data distribution P (X,Y)

3 / 48

Generative models definition

Definition: Generativemodels learn a joint distribution over the entire dataset with some
target variable(s). They are mostly used for sampling applications or density estimation:

Sampling the model

A generative model learns to fit a
model distribution over observations
so we can sample novel data from the
model distribution, xnew ∼ pmodel(x)

Density estimation

Density estimation is estimating the
probability of observations. Given a
datapoint x, what is the probability
assigned by the model, pmodel(x)?

sampler

density

4 / 48

Introduction probability examples

Examples

Linguists
• What is the probability of a sentence? P (sentence)

• P (‘the dog chased after the ball’)
• P (‘printers eat avocados when sad’) ≈ 0

Meteorologists
• What is the probability of whether it will rain? P (rain)

Artists
• What is the probability of this image being a face? P (face)

Musicians
• What is the probability this sounds like Beethoven? P (Beethoven)

5 / 48

Density estimation maximum likelihood estimation

Definition: maximum likelihood estimation

Maximum likelihood estimation (MLE) is a
method for estimating the parameters of a
probability distribution by maximizing a
likelihood function, so that under the model the
observed data is most probable

θ∗ = argmax
θ

pmodel(X; θ)

= argmax
θ

n∏
i=1

pmodel(x
i; θ)

≈ argmax
θ

Ex∼pdata [log pmodel(x; θ)],

where X = {x1,x2, ...,xn} are from pdata(x)

6 / 48

Density estimation cumulative distribution sampling

Example: cumulative distribution sampling

Given the CDF FX(x), the antiderivative of
fX(x) = pmodel(x) , e.g. where F ′(x) = pmodel(x)

FX(x) =

∫ x

−∞
fX(u) du

we can sample new data by transforming
random values z from the uniform distribution
z ∼ U via the inverse of the CDF F−1

X (z).

z ∼ U

xnew ∼ pmodel(x)

7 / 48

Autoregressive generative models

Definition: autoregressive (AR)
generative models

AR models maximise the likelihood of the
training data (excellent mode coverage):

pθ(x) = pθ(x1, ..., xN) =
N∏
i=1

pθ(xi|x1, ..., xi−1)

This is slow due to the sequential nature
defined by the chain rule of probability.

= ...h ht−1 ht ht+1 ht+n

the cat sat mat

dog sat on and

8 / 48

Generative networks definition

Definition: generative networks

The goal of generative networks is to take some
simple distribution, like a normal distribution or
a uniform distribution, and apply a non-linear
transformation (e.g. a deep neural network) to
obtain samples from pdata(x)

In 1D, we can say G = F−1
data(x) and sample

z ∼ U , and similarly in ND — but assuming the
determinant of the Jacobian and the inverse of G
are computable, which is a large restriction.
Ideally we want z in low dimensions

G(z)

latent space

z ∼ p(z)

9 / 48

Generative adversarial networks definition

Definition: generative adversarial networks

A generative adversarial network (GAN) is a
non-coorporative zero-sum game where two
networks compete against each other [2].

One network G(z) generates new samples,
whereas D estimates the probability the sample
was from the training data rather than G:

min
G

max
D

V (D,G) = Ex∼pdata(x)[logD(x)]

+ Ez∼pz(z)[log(1−D(G(z)))].

z ∼ N
fake

real

G(z)

D(x)
3
7

10 / 48

Generative adversarial networks properties

GAN properties

GANs benefit from differentiable data
augmentation [3] for both reals and fakes, but
are otherwise notoriously difficult to train:

• Non-convergence
• Diminishing gradient
• Difficult to balance
• Mode collapse (next slide)

Link to Colab exampleW

z ∼ N
fake

real

G(z)

D(x)
3
7

11 / 48

https://colab.research.google.com/gist/cwkx/74e33bc96f94f381bd15032d57e43786/simple-gan.ipynb

Generative adversarial networks mode collapse

Definition: mode collapse

This is where the generator rotates through a small subset of outputs, and the
discriminator is unable to get out of the trap. Mode collapse is arguably the
main limitation of GANs.

Figure from [4]. The final column shows the target data distribution and the bottom row shows a GAN rotating through the modes.

12 / 48

Generative adversarial networks conditional GANs

Definition: conditional GAN

GANs can be conditioned with labels y if
available [5] by feeding the label information
into both the generator and the discriminator:

min
G

max
D

V (D,G) = Ex,y∼pdata(x)[logD(x|y)]

+ Ez∼pz(z)[log(1−D(G(z,y)|y))].

Link to Colab exampleW

z ∼ Ny
fake y

real

G(z,y)

D(x|y) 3
7

13 / 48

https://colab.research.google.com/gist/cwkx/348cde3bf11a08c45a69b1873ebb6de3/conditional-gan.ipynb

Generative adversarial networks information maximizing GANs

Definition: information maximizing GANs

GANs can be trained to learn disentangled latent
representations in a completely unsupervised
manner. InfoGAN [6] popularised this by
maximizing mutual information between the
observation and a subset of the latents:

min
G,Q

max
D

VInfoGAN(D,G,Q) = V (D,G)− λLI(G,Q)

where LI(G,Q) is a variational lower bound of
the mutual information.

Link to Colab exampleW

z ∼ Nc

fake
Q(ĉ|x)

ĉ

real

G(z, c)

Cross Entropy

D(x)
3
7

14 / 48

https://colab.research.google.com/gist/cwkx/7f5377ed8414a096180128b487846698/info-gan.ipynb

Generative adversarial networks adversarial autoencoders

Definition: adversarial autoencoders

Adversarial autoencoders [7] are generative
models that permit sampling.

In addition to the reconstruction loss, such
‖x− x̂‖2, they use adversarial training to match
the aggregated posterior of the hidden code
vector z of the autoencoder with an arbitrary
prior distribution, such as z ∼ N (0, I).

z ∼ N (0, I)

x ∼ pdata(x) x̂

zE(x) D(z)

3
7

15 / 48

Popular applications unpaired translation (CycleGAN)

Definition: unpaired translation (CycleGAN)

CycleGAN [8] propose an adversarial architecture that enables unpaired image
translation. It has twin residual generators and two discriminators, which
translate between the domains, alongside a cycle consistency loss (an L1
norm) which ensures the mapping can recover the original image.

x ŷ

cycle consistency loss

x̂

G(x) F (ŷ)

DY DX
3
7

3
7

16 / 48

Popular applications adversarial anomaly detection

Definition: anomaly detection

Unsupervised anomaly detectors [9] learn a
normal distribution over (healthy) observations.
Then, when they observe something not
observed in training (unhealthy/dangerous), they
fail to reconstruct - detecting it as an anomaly.
Region-based anomaly detectors [10] learn a
distribution over inpainted (erased) regions.

x x̂

Lc
Ll
La

G(x)

D(x̂)

17 / 48

Vector quantization

Vector quanitization

Imposing a discrete prior on the latents can
be achieved with either variational or
adversarial (non-blurry) approaches.

The Gumbel-Softmax distribution
interpolates between discrete
one-hot-encoded categorical distributions
and continuous categorical densities.

Above: vector quantisation. Below:
shift mode collapse to perceptually
unimportant parts of the signal.

18 / 48

Energy-based models definition

Definition: energy-based models

These are just any function that is happy
when you input something that looks like
data, and is not happy when you input
something that doesn’t look like data.

E(x) = 0 3

E(x̃) > 0 7

This generic definition fits a large majority of
machine learning models. For example
L(E(x),y) (a classifier)

Energy increases off manifold

0
0.5

1
1.5

2 0

1

2

0

1

2

x

y

en
er
gy

19 / 48

Energy-based models GANs as energy-based models

Definition: energy-based models

GANs are also energy models. The generator
G generates samples off the manifold, then
the descriminator D says these should be
one everywhere, whereas it says real
samples should be zero everywhere.

The generator also has to get good at
sampling points on the data manifold. So it
has to learn to generate points in the valley
regions.

Is this smooth? What does a 1-Lipschitz
discriminator do to the energy landscape?

GAN energy

0
0.5

1
1.5

2 0

1

2

0

0.5

1

x

y

en
er
gy

20 / 48

Energy-based models clustering as an energy-based model

Definition: clustering algorithm

A cluster is a connected-component of a
level-set of the unknown PDF over our data
observations.

Traditionally:

• We don’t know the PDF (the energy
landscape)

• We don’t necessarily know the level set
• although 0.5 is appropriate for BCE

• This can be expensive (deep learning)

Click to watch a video that visually explains
from the definitionv

Example: clustering by its definition

21 / 48

https://youtu.be/AgPQ76RIi6A?t=493

Energy-based models softmax and softmin

Definition: softmax and softmin

Softmax and softmin functions rescale elements to be in the range
[0, 1] and such that they sum to 1. So they create a probability mass
function, e.g.:

1.3
7.2
2.4
0.5
1.1

→ ezi∑K
j=1 e

zj
→

0.0027
0.9858
0.0081
0.0012
0.0022

Softmax functions are widely used (not just for EBMs) where a
distribution is needed, such as the last layer of a classifier.

22 / 48

Energy-based models exact likelihood

Challenges: energy-based models

EBMs are based on the observation that any
probability density function p(x) for x ∈ Rn
can be expressed as:

p(x) =
e−E(x)∫

x̃∈X e
−E(x̃)

,

where E(x) : Rn → R is the energy function.
However computation of the integral is
intractable [11] for most models.

Energy increases off manifold

0
0.5

1
1.5

2 0

1

2

0

1

2

x

y

en
er
gy

23 / 48

Score-based approaches Langevin dynamics

Definition: score-based GMs

Score-based generative modeling [12] also
eliminates the intractable second term
(sampling from the model). For the PDF p(x)
the score function is:

s(x) = ∇x log p(x)

When the score function is known, we can
use Langevin dynamics to sample the model.
Given a step size α > 0, a total number of
iterations T , and an initial sample x0 from
any prior distribution π(x), Langevin
dynamics iteratively updates:

xt ← xt−1 + α∇x log p(xt−1) +
√

2α zt

Energy increases off manifold

0
0.5

1
1.5

2 0

1

2

0

1

2

x

y

en
er
gy

24 / 48

Score-based approaches score-matching and denoising diffusion

Diffusion probablistic modeling

Diffusion Probablistic Modeling approaches
(such as DDPMs [13]) typically have a U-Net
shaped architecture:

Data is gradually diffused in a forward
process for T timesteps until it matches the
target distribution.

The reverse process gradually removes noise
starting at p(xT) = N (xT ;0, I) for T
timesteps.

‘Score-Based Generative Modeling through
Stochastic Differential Equations’ [14] has
author code and PyTorch tutorials in the link.

Example: CIFAR10 samples from [13]

25 / 48

Diffusion-based anomaly detection

Diffusion-based anomaly detection

Like GANs, diffusion-based models work
well for anomalies (great for small datasets).

• Do a partial diffusion
• Train only on healthy/normal data
• Abnormal denoising will only know
how to make the data look normal

• Any error = surprise = anomalies

Our recent paper, AnoDDPM [15] (CVPR
NTIRE), uses simplex noise to capture
multi-scale anomalies. See also
UNIT-DDPM [16] (unpaired translation).

Link to project pageW

26 / 48

https://julianwyatt.co.uk/anoddpm

Flow models definition

Definition: flow models

Flow models restrict our function to be a chain of invertible
functions, called a flow, therefore the whole function is invertible.

inverse
f−1(x) p(z)

flow
f(z)p(z)

27 / 48

Flow models the determinant

Recap: the determinant

The determinant of an n× n square matrixM is a scalar value that determines
the factor of how much a given region of space increases or decreases by the
linear transformation ofM :

detM = det

a11 a12 . . . a1n

a21 a22 . . . a2n

...
...

...
an1 an2 . . . ann

 =
∑

j1j2...jn

(−1)τ(j1j2...jn)a1j1a2j2 . . . anjn

Watch a 3Blue1Brown’s video hereW

PyTorch: torch.det(M), for example: torch.det(torch.eye(3,3)) returns 1.0
and torch.det(torch.tensor([[3.,2.],[0.,2.]])) returns 6.0

28 / 48

https://www.youtube.com/watch?v=Ip3X9LOh2dk&feature=youtu.be&t=148

Flow models the change of variables theorem

Definition: the change of variables theorem

Given pZ(z) where x = f(z) and z = f−1(x) we ask what is pX(x)?

pX(x) = pZ(f−1(x))

∣∣∣∣det

(
∂f−1(x)

∂x

)∣∣∣∣

requires normalisation
f(z)

pZ(z)

29 / 48

Normalising flows definition

Definition: normalising flows

Normalising flows f : Rn → Rn transform and renormalise a sample
z ∼ pθ(z) through a chain of bijective transformations f , where:

x = fθ(z) = fK ◦ · · · ◦ f2 ◦ f1(z)

log pθ(x) = log pθ(z) +

K∑
i=1

log

∣∣∣∣ det

(
∂f−1

i

∂zi

) ∣∣∣∣

inverse
f−1(x) p(z)

flow
f(z)p(z)

30 / 48

Normalising flows triangular Jacobians

Easy to compute determinants

We have a sequence of high-dimensional
bijective functions, where we need to
compute the Jacobian determinants.

Computing the determinants can be
expensive, so most of the literature focuses
on restricting the function f−1 to those with
easy-to-compute Jacobian determinants.

This is done by ensuring the Jacobian matrix
of the functions is triangular.

Definition: triangular Jacobian

If the Jacobian is lower triangular:

J =

a1,1 0
a2,1 a2,2

a3,1 a3,2

. . .
...

...
.

an,1 an,2 . . . an,n−1 an,n

then the determinant is simply the product
of its diagonals.

31 / 48

Normalising flows normalising flow layers

Description Function Log-Determinant

Additive Coupling [17] y(1:d) = x(1:d)

y(d+1:D) = x(d+1:D) + f(x(1:d))
0

Planar [18] y = x + uh(wT z + b)
With w ∈ RD , u ∈ RD , b ∈ R

ln |1 + uTh′(wT z + b)w|

Affine Coupling [19] y(1:d) = x(1:d)

y(d+1:D) = x(d+1:D)�fσ(x(1:d))+fµ(x(1:d))

∑d
1 ln |fσ(x(i))|

Batch Normalization
[19]

y = x−µ̃√
σ̃2+ε

− 1
2

∑
i ln
(
σ̃2
i + ε

)
1x1 Convolution [20] With h×w × c tensor x & c× c tensorW

∀i, j : yi,j = Wxi,j

h · w · ln | detW|

i-ResNet [21] y = x + f(x)
where ‖f‖L < 1

tr(ln(I +∇xf)) =∑∞
k=1(−1)k+1 tr((∇xf)k)

k

Emerging Convolutions
[22]

k = w1 �m1, g = w2 �m2

y = k ?l (g ?l x)

∑
c ln |kc,c,my,mxgc,c,my,mx |

32 / 48

Generative networks variational autoencoders

Definition: variational autoencoders

Variational autoencoders are generative models,
as they impose a prior over the latent space p(z),
typically z ∼ N (0, I) which can be sampled from.

z ∼ E(x) = q(z|x), x̂ ∼ D(z) = p(x|z)

The VAE loss is the negated expected
log-likelihood (the reconstruction error) and the
prior regularization term:

LVAE = −Eq(z|x)

[
log

p(x|z)p(z)

q(z|x)

]
= Lpixel

recon +Lprior

where
Lpixel

recon = −Eq(z|x)[log p(x|z)]

Lprior = DKL(q(z|x) || p(z))

z ∼ N (0, I)

x ∼ pdata(x) x̂q(z|x)
µ

σ ×
+ z

ε

E(x)

z=µ+σ�ε

p(x|z)

33 / 48

Generative networks variational autoencoders: ELBO

Definition: ELBO

VAEs therefore have three components:

1. the decoder pθ(x|z)

2. the approximate posterior (encoder) qφ(z|x)

3. the prior distribution pθ(z)

They are trained with the reparameterisation trick to
maximise the evidence lower bound (ELBO):

log pθ(x) ≥ Ez∼qφ(z|x) log pθ(x|z)−DKL [qφ(z|x)||pθ(z)]

Read [23] for detail on the theory (where the figure is
from) and [24] for a state-of-the-art method that
stacks VAEs hierarchically (Very Deep VAEs).

34 / 48

Implicit networks definition

Definition: implicit representations

Consider data Φ: Rm → Rn, like a single
image, as a function of coordinates c ∈ Rm.
The aim is to learn a neural approximation of
Φ that satisfies an implicit equation:

R(c,Φ,∇Φ,∇2
Φ, . . .) = 0, Φ: c 7→ Φ(c).

Equations with this structure arise in a
myriad of fields, namely 3D modelling,
image, video, and audio representation.

Example: implicit network

−0.2
−0.1

x(c) ≈ Φx(c)

35 / 48

Implicit representation networks SIREN

Definition: SIREN

SInusoidal REpresentation Networks (SIREN)
are a simple implicit representation network
with fully connected layers, but use sin (with
clever initialisation to scale it appropriately)
as their choice of non-linearity [25].

sin is periodic, so it allows to capture
patterns over all of the coordinate space (it’s
translation invariant, like convolutions).

Example: SIREN (implicit network)

−0.2
−0.1

x(c) ≈ Φx(c)

Link to project pageW

36 / 48

https://vsitzmann.github.io/siren/

Implicit representation networks NeRF

Definition: NeRF

Neural Radiance Fields (NeRF) are
similar to SIRENs, but instead of
representing an image, they
represent a single 3D scene [26].

They map from pixel positions
(x, y, z) and a viewing direction
(θ, φ) to a colour and density value
σ integrated via a ray on Fθ.

Link to project pageW

37 / 48

https://www.matthewtancik.com/nerf

Implicit networks gradient origin networks

Definition: gradient origin networks

Gradient origin networks (GON) treat the
derivative of the decoder as an encoder [27].
This allows us to compute the latents:

z = −∇z0L(x, F (z0))

which are then jointly optimised, giving the
GON objective:

Gx = L(x, F (−∇z0L(x, F (z0)))).

Link to project pageW

Example: implicit GON

−0.2
−0.1 F (c, z)

z0 = 0

38 / 48

https://cwkx.github.io/data/GON/

Hybrids combinations of the five modelling equations

Summary

p(x) =
N∏
i=1

p(xi|x1, ..., xi−1)

p(x) ≈ e−E(x)∫
x̃∈X e

−E(x̃)
e.g.∇x log p(x)

log p(x) ≥ Lpixel
recon −DKL [qφ(z|x)||p(z)]

log p(x) 6= logD(x) (in GAN)

p(x) = pZ(f−1(x))

∣∣∣∣det

(
∂f−1(x)

∂x

)∣∣∣∣
Our hybrids “Unleashing transform-
ers” [28] W (ECCV22) or “Megapixel
image generation” (new) [29].

Expressivity
Capacity

Steps
Time
Depth

Fit
Coverage

39 / 48

https://github.com/samb-t/unleashing-transformers...

Our hybrid [29] 2 seconds generation, 2 days training, single GTX 1080Ti

40 / 48

Take Away Points

Contributions

• State-of-the-art = hybrids
• Some applications only need partial diffusion (AnoDDPM, UNIT-DDPM)
• Start of non-hybrid generative implicit networks (GONs)—we need new
interpolated modelling theory please (more like [30])

Tips, tricks and the future

• Eventually move discriminative modelling tasks to generative modelling
• Measuring progress sucks (not just quality/performance)
• For vision state-of-the-art:

• Intentionally mode collapse parts of signal you don’t care about
• Model with good coverage + quality (AR,EBM) the remaining signal

41 / 48

References I

[1] Sam Bond-Taylor, Adam Leach, Yang Long, and Chris G. Willcocks. “Deep
Generative Modelling: A Comparative Review of VAEs, GANs, Normalizing Flows,
Energy-Based and Autoregressive Models”. In:
IEEE Transactions on Pattern Analysis and Machine Intelligence (2021), pp. 1–1.
DOI: 10.1109/TPAMI.2021.3116668.

[2] Ian Goodfellow et al. “Generative adversarial nets”. In:
Advances in neural information processing systems. 2014, pp. 2672–2680.

[3] Shengyu Zhao, Zhijian Liu, Ji Lin, Jun-Yan Zhu, and Song Han. “Differentiable
augmentation for data-efficient gan training”. In: arXiv preprint arXiv:2006.10738
(2020).

[4] Luke Metz, Ben Poole, David Pfau, and Jascha Sohl-Dickstein. “Unrolled generative
adversarial networks”. In: arXiv preprint arXiv:1611.02163 (2016).

[5] Mehdi Mirza and Simon Osindero. “Conditional generative adversarial nets”. In:
arXiv preprint arXiv:1411.1784 (2014).

42 / 48

https://doi.org/10.1109/TPAMI.2021.3116668

References II
[6] Xi Chen, Yan Duan, Rein Houthooft, John Schulman, Ilya Sutskever, and

Pieter Abbeel. “InfoGAN: Interpretable representation learning by information
maximizing generative adversarial nets”. In:
Advances in neural information processing systems. 2016, pp. 2172–2180.

[7] Alireza Makhzani, Jonathon Shlens, Navdeep Jaitly, Ian Goodfellow, and
Brendan Frey. “Adversarial autoencoders”. In: arXiv preprint arXiv:1511.05644
(2015).

[8] Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A Efros. “Unpaired
image-to-image translation using cycle-consistent adversarial networks”. In:
Proceedings of the IEEE international conference on computer vision. 2017,
pp. 2223–2232.

[9] Samet Akçay, Amir Atapour-Abarghouei, and Toby P Breckon. “Skip-ganomaly:
Skip connected and adversarially trained encoder-decoder anomaly detection”. In:
2019 International Joint Conference on Neural Networks (IJCNN). IEEE. 2019,
pp. 1–8.

43 / 48

References III

[10] Bao Nguyen, Adam Feldman, Sarath Bethapudi, Andrew Jennings, and
Chris G Willcocks. “Unsupervised Region-based Anomaly Detection in Brain MRI
with Adversarial Image Inpainting”. In: arXiv preprint arXiv:2010.01942 (2020).

[11] Yann LeCun, Sumit Chopra, Raia Hadsell, M Ranzato, and F Huang. “A tutorial on
energy-based learning”. In: Predicting structured data 1.0 (2006).

[12] Yang Song and Stefano Ermon. “Improved techniques for training score-based
generative models”. In: arXiv preprint arXiv:2006.09011 (2020).

[13] Jonathan Ho, Ajay Jain, and Pieter Abbeel. “Denoising diffusion probabilistic
models”. In: arXiv preprint arXiv:2006.11239 (2020).

[14] Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar,
Stefano Ermon, and Ben Poole. “Score-Based Generative Modeling through
Stochastic Differential Equations”. In:
International Conference on Learning Representations. 2021. URL:
https://openreview.net/forum?id=PxTIG12RRHS.

44 / 48

https://openreview.net/forum?id=PxTIG12RRHS

References IV

[15] Julian Wyatt, Adam Leach, Sebastian M Schmon, and Chris G Willcocks.
“AnoDDPM: Anomaly Detection With Denoising Diffusion Probabilistic Models
Using Simplex Noise”. In:
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.
2022, pp. 650–656.

[16] Hiroshi Sasaki, Chris G Willcocks, and Toby P Breckon. “Unit-ddpm: Unpaired
image translation with denoising diffusion probabilistic models”. In:
arXiv preprint arXiv:2104.05358 (2021).

[17] Laurent Dinh, David Krueger, and Yoshua Bengio. “Nice: Non-linear independent
components estimation”. In: arXiv preprint arXiv:1410.8516 (2014).

[18] Danilo Jimenez Rezende and Shakir Mohamed. “Variational inference with
normalizing flows”. In: arXiv preprint arXiv:1505.05770 (2015).

[19] Laurent Dinh, Jascha Sohl-Dickstein, and Samy Bengio. “Density estimation using
real nvp”. In: arXiv preprint arXiv:1605.08803 (2016).

45 / 48

References V

[20] Durk P Kingma and Prafulla Dhariwal. “Glow: Generative flow with invertible 1x1
convolutions”. In: Advances in neural information processing systems. 2018,
pp. 10215–10224.

[21] Jens Behrmann, Will Grathwohl, Ricky TQ Chen, David Duvenaud, and
Jörn-Henrik Jacobsen. “Invertible residual networks”. In:
International Conference on Machine Learning. 2019, pp. 573–582.

[22] Emiel Hoogeboom, Rianne van den Berg, and Max Welling. “Emerging convolutions
for generative normalizing flows”. In: arXiv preprint arXiv:1901.11137 (2019).

[23] Diederik P Kingma and Max Welling. “An introduction to variational
autoencoders”. In: arXiv preprint arXiv:1906.02691 (2019).

[24] Rewon Child. “Very Deep {VAE}s Generalize Autoregressive Models and Can
Outperform Them on Images”. In:
International Conference on Learning Representations. 2021. URL:
https://openreview.net/forum?id=RLRXCV6DbEJ.

46 / 48

https://openreview.net/forum?id=RLRXCV6DbEJ

References VI

[25] Vincent Sitzmann, Julien Martel, Alexander Bergman, David Lindell, and
Gordon Wetzstein. “Implicit neural representations with periodic activation
functions”. In: Advances in Neural Information Processing Systems 33 (2020).

[26] Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik, Jonathan T Barron,
Ravi Ramamoorthi, and Ren Ng. “Nerf: Representing scenes as neural radiance
fields for view synthesis”. In: European conference on computer vision. Springer.
2020, pp. 405–421.

[27] Sam Bond-Taylor and Chris G. Willcocks. “Gradient Origin Networks”. In:
International Conference on Learning Representations. 2021. URL:
https://dro.dur.ac.uk/34356/1/34356.pdf.

[28] Sam Bond-Taylor, Peter Hessey, Hiroshi Sasaki, Toby P Breckon, and
Chris G Willcocks. “Unleashing Transformers: Parallel Token Prediction with
Discrete Absorbing Diffusion for Fast High-Resolution Image Generation from
Vector-Quantized Codes”. In: European Conference on Computer Vision (ECCV)
(2022).

47 / 48

https://dro.dur.ac.uk/34356/1/34356.pdf

References VII

[29] Alex F McKinney and Chris G Willcocks. “Megapixel Image Generation with
Step-Unrolled Denoising Autoencoders”. In: arXiv preprint arXiv:2206.12351
(2022).

[30] Patrick Kidger. “On neural differential equations”. In:
arXiv preprint arXiv:2202.02435 (2022).

48 / 48

	Modelling data
	Generative models
	learning the data distribution
	definition
	probability examples
	maximum likelihood estimation
	cumulative distribution sampling
	recurrent neural networks
	generative networks

	Generative adversarial networks
	definition
	properties
	mode collapse
	conditional GANs
	information maximizing GANs
	adversarial autoencoders

	Popular applications
	unpaired translation
	adversarial anomaly detection
	vector quantization

	Energy-based models
	definition
	GANs as energy-based models
	clustering as an energy-based model
	softmax and softmin
	exact likelihood

	Score-based approaches
	Langevin dynamics
	score-matching and denoising diffusion
	diffusion-based anomaly detection

	Flow models
	definition
	the determinant
	the change of variables theorem

	Normalising flows
	definition
	triangular Jacobians
	normalising flow layers
	variational autoencoders
	ELBO

	Implicit networks
	implicit representations
	SIREN
	NeRF
	GONs
	hybrids

	References

